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Abstract

This report summarizes some recent research results in robustness stability analysis for evolution systems
in Iilbert space. With applications such as the control of flexible structures in mind, a general framework is
chosen to include infinite dimensional systems and nonlinear, time-varying perturbations. The main result
of the report characterizes model perturbations that do not destabilize a nominal closed loop system in
terms of the passivity of the nominal system. Special cases of this result produces the generalization of the
absolute stability theorem, the hyperstability theorem and the circle criterion to evolution systems. When
the perturbation is known to be linear and diagonal, different stability bounds are obtained depending on
the signs of the perturbation elements. The directionality in the robustness margins provide possibility to
adjust the nominal point of operation to enhance robustness. Robustness of nonlinear nominal systems can
also be analyzed by considering the nonlinear dynamics as perturbations. The synthesis problem associated
with the passivity approach is shown to be identical to the H—-optimization problem. Based on the known
solution to the Hoo—optimization problem, we show a procedure for designing stabilizing finite dimensional
compensator for infinite dimensional systems. Several examples have been included to illustrate applications

of the theoretical results in this report.
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1. Iutroduction

This report addresses the following problem, defined as the robustness analysis problem, for the intercon-

nected system shown in Fig. 1:
Given a stable system T, find a class of feedback systems, A, such that T remains stable

The situation we are considering is aln openloop system with an external feedback compensation to ensure
satisfactory performance in the face of system and environmental uncertainties. The design of the feedback
compensation is usually based on an approximate model of the open loop system. If the modeling error
is trcated as a feedback perturbation of the open loop plant, then we have the interconnection as in Fig.
I, where the forward system, T, represents the nominal closed loop system (the model of the open loop
plant with the feedback compensation) and the feedback system, A, represents the modeling error. Possible
sources of modeling errors include unmodeled plant dynamics, instrument (sensors and actuators) dynamics,

parameter uncertainty etc.
Assume that 7 is modeled by an abstract evolution system on a real Hilbert space X:
z(t) = Az(t) + Bu(t) , z(0)=z,€X
y(t) = Cz(t) + Du(t)

(1.1)

The operator A : D(A) C X — X, is the infinitesimal generator of a C,-semigroup , U(t). The operators,
B:R" =X ,C:X—-R™, D:R™ — R™ are all bounded.

The solution of (1.1), z(t), is considered in the mild sense [1):
t
z(t) = U(t)z, +/ U(t — s)Bu(s)ds . (1.2)
0

The strong differentiability of z(t) is not imposed. Existence and uniqueness of z(t) will be considered later.

T is said to be exponentially stable if A generates an exponentially stable C,-semigroup . z(t) — 0 as
| — oc means that for all z, € X, the state trajectory converges to zero in norm. z(t) — 0 exponentially as
{ — oo means that for all z, € X, there exists M(z,) € R such that the state trajectory satisfies the bound

lz()ll < M(zo)e="
Iu our robustness analysis problem, we assume 7 to be exponentially stable. We want to find a class of A
such that when A is connected to 7 as a feedback, z(t) — 0 as t — oo.
The general framework of the abstract evolution system is chosen for the following reasons:

I. Many physical processes are naturally modeled as distributed parameter systems (DPS) that can be cast
in the form of (1.1) . Large space structures [2], nuclear reactor dynamics [3, 4], process control systems

[5], time delay systems [6], are some examples.

2. This framework provides a global context to study convergence issues related to finite-dimensional ap-
proximation models and finite-dimensional compensators based on such models. It has been shown that
weak convergence (i.e., the rate of convergence, or, equivalently, the accuracy of the approximation, is

dependent on the state) of the gain can occur if proper care has not been taken in the approximation
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procedure [7] resulting in high spatial frequency component and possible numerical difficulty in imple-
mentation. Loss of controllability and observability has also been noted if an ill-advised basis has been

selected for approximation [8].

3. In many applications, this framework provides a more efficient and physically meaningful parameterization
of the underlying system. Take a simple Euler-Bernoulli beam for example. The partial differential
cquation (PDE) model contains only a few physical constants while a high order finite element model
incurs a great many more parameters. The robustness analysis problem is also more meaningful if posed
with respect to the physical parameters rather than their projections onto some approximation basis.

There have been many robustness analysis techniques proposed in the literature. They can be classified
as either frequency domain or time domain methods. In the former category, there are many classical
techniques for single-input/single—output (SISO) systems by using, for example, the magnitude and phase
plots (Bode plot), Nyquist plot, Nicole’s chart etc. For multi-input/multi-output (MIMO) systems, most of
the methods are based solely on the gain information, for example, maximum singular values [9] (also known
as the principle gain [10] and Ho,—norm [11]) and y measure [12]. For complex, norm-bounded uncertainties,
these criteria are non-conservative. Stability conditions incorporating the phase information of 7 have been
stated in [10,13] but they do not translate to easily applicable rules. The time domain methods are mostly
based on Lyapunov analysis [14,15,16] or Kharitonov’s Theorem (see [17] for an introduction). The former
studies the solvability of the Lyapunov equation under a perturbed system matrix. The latter deals with

the stability of polynomials with uncertain coeflicients.

Most of these tools are rooted in finite dimensions and do not apply directly to our general setting. We
thercfore propose a new robustness analysis technique that is applicable to evolution systems and bridges
both time and frequency domains. The stability analysis is performed in the state space by using the
Lyapunov method, but the robustness margin is given by an index that is most conveniently computed from
the transfer function. This allows us to prove state space stability by working only with a finite dimensional

transfer matrix. The main idea of our approach can be stated simply:
Characterize an acceptable class of A based on the degree of passivity of T.

The motivation of the passivity approach is based on the following observations:

1. Flexible structures with colocated sensors and acturators are passive. They remain stable for any negative
feedback.

2. Passivily analysis is a cornerstone in the field of adaptive control. It is the passivity of certain closed loop

transfer function that provides the robustness with respect to the uncertainties in the parameters.
3. Passive systems provide a natural, energy-like Lyapunov function for stability analysis.

4. In the Lur’e problem, passivity is used to characterize systems that remain stable under sector bounded

feedback perturbations.

5. Passivity has been used in applications related to the control flexible structures. In [18,19], robust con-
trollers are designed to exploit the open loop passivity property (though the plant needs to be open loop
stable). In [20,21], simpie adaptive control strategies are devised based on the passivity principle.
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6. In the linear quadratic regulator problem (optimal quadratic regulator with full state information), it is
known that the closed loop system possesses [1,00) gain margin and [-%, §] phase margin [22,23]. This
fact is most readily seen by noting certain transfer function is positive real (see section 10.1).

Our approach in applying the passivity concept to the robust stability analysis problem is to first study two
simpler, prototype problems, the absolute stability and hyperstability problems, and then use to results for
the more general situation. A system T described by (1.1) is called absolute stable if z(t) — 0 exponentially
as t — oo for any feedback system, A, that is memoryless, nonlinear time-varying and non-negative. 7 is
called hyperstable if z(t) — 0 as { — oo for any dissipative dynamical system, A (i.e., A satisfies the Popov
inequality; see section 2.2). T is called exponentially hyperstable if z(t) — 0 exponentially for any A that
satisfies the exponential Popov inequality (see section 2.2). The absolute stability (resp. hyperstability)
problem is to find a class of 7 that is absolute stable (resp. hyperstable).

If T is finite-dimensional, it was shown [24,25], via the Kalman-Yakubovich Lemma [26,27,28] (also called
the Positive Realness Lemma), that strictly positive real systems are absolute stable. This result is called
the absolute stability theorem. In [29], strictly positive real systems are also shown to be hyperstable. This
is known as the hyperstability theorem. These two theorems have proven to be invaluable tools in finite
dimnensional system analysis with applications ranging from nonlinear control, adaptive control to robustness

analysis.

In finite dimensional analysis, positive realness is stated as a frequency domain non-negativity condition
of a transfer function. By using the Kalman-Yakubovich Lemma, the frequency condition is related to a set
of algebraic equations, which is called the Lur’e equations (this terminology is used in [30] for the Riccati
cquation; here we use it to mean the equivalent set of equations in the Kalman-Yakubovich Lemma in [31]),
associated with the time domain parameters. A quadratic Lyapunov function with the interpretation of
encrgy [32] can be constructed from the solution of the Lur’e equations. The strict decreasing property of
the Lyapunov function under dissipative feedback connection then leads to the absolute and hyperstability

theorems.

If the above Lyapunov method is applied here, a problem arises: The energy function associated with a
positive real system is not a true Lyapunov function candidate in general. As a result, energy decaying to
zero does not always imply internal (state space) stability. To circumvent this problem, our approach is to
first show La boundedness of the state trajectory from the Lyapunov analysis and then infer its asymptotic
convergence to zero by using a generalization of the Datko’s theorem [33].

In contrast to the finite~dimensional case, we define positive realness in terms of the solvability of the
Lur’e equations since it is used in to the stability analysis. Sufficient conditions in terms of input/output
properties and in the frequency domain (by using a Hilbert space generalization of the Positive Realness
Lemma [30,34]) are also stated. The “closeness” of a system to positive realness can be characterized by
a scalar index, called the v-index for convenience, that is defined in either the time or frequency domain.
(The frequency domain v-index has been introduced in [18,19] in the context of controller design for flexible
structures.) Note that both gain and phase information of the system is captured by this index. The v-index
can be computed from the finite dimensional approximation of the time domain parameters (the 4, B, C, D
operators). We will show that the strong convergence of the approximate parameters implies the convergence

of the v-index.

With the generalization of the Datko’s Theorem and a suitable definition of positive realness, our solution

of the absolute stability and hyperstability problems can be succinctly stated:
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If the v—-index of a system is negative, then the system is both absolute stable and hyperstable.

By using loop transformations, the absolute stability and hyperstability results are used to analyze stability
of more general systems. An acceptable class of A is related to the v-index of the transformed 7. This result
can be interpreted as a generalization of the circle criterion [24]. This generalization is similar to the past
results on the circle criterion for evolution equations [35,36], but the internal (state space) stability result
and the simple graphic test proposed here are unique to our approach. As a special case, we also recover the

small gain stability criterion based on the H,—norm.

Absolute stability and hyperstability for evolution systems in Hilbert space has been of considerable
interest in the literature [30,34,37,38,39]. Our stability analysis is different from the past approaches and our
framework allows more general systems, for example, systems with multiple inputs and outputs, dynamical
dissipative feedback systems, and systems that satisfy circle criterion. In particular, the absolute stability

results in [34,39] are special cases of the results here (see Section 5).

When A contains additional structure such as diagonality, the multiplier method [§ V1.9 in 40} can be used
to improve the sharpness of the robustness margin. Two types of multipliers are considered, corresponding
to the Popov criterion and off-circle criterion. Finding the optimal multiplier within these classes is shown
to be globally convex, thus can be performed efficiently. For a more general class of multipliers, finding
the optimal multiplier involves a constrained optimization problem in the unit ball in Ly(—o00,00). We
propose an approximate finite dimensional solution by using an orthonormal basis for Ly(—00,00), though
the numerical aspect of this approach remains to be explored. When A is both diagonal and constant, a
robustness margin can be computed for each quadrant of the parameter space. Specifically, if there are m
diagonal elements in A, then we can compute 2™ robustness margins for each combination of the signs of
the diagonal clements. This directional robustness information may be useful in pointing to the direction to

change the operating point to enhance robustness.

For nonlinear T’s, there are two ways to find robustness margins. One can lump the nonlinear dynamics
with the perturbation A and then apply the results here. The bound in general will be conservative since the
knowledge of the nonlinear dynamics is not explicitly used. However, we are able to recover some stability
results on nonlinear systems that appeared in [41]. If the nonlinear dynamics is linear in input (i.e., linear
with respect to the output of the feedback system), then one may use the nonlinear definition of passivity

[42] directly. This avenue remains to be fully explored, however.

Though most of the results in this report deals with the stability analysis problem, the passivity-based
stability criteria are useful in the robust control context, also. The problem of finding compensator to achieve
certain desired passivity in a specified input/output channel can be transformed to an equivalent Hq,—
optimization problem [43]. In the case of additive plant perturbations, an analytic bound of the achievable
v-index with respect to the additive channel can be derived. A stabilizing compensator can then be designed
by solving the Nehari problem (the so-called one-block problem [44]). This approach is similar to that in
[15], except a passivity-based stability criterion is used instead of the small gain criterion. Our result has
thie interesting feature that only the unstable portion of the open loop plant, denote it by P,, needs to be
modeled for the compensator design (resulting in a low order compensator), if the minimum ITankel singular
value of P is sufficiently large. Application of this result to infinite dimensional evolution systems results in
a design algorithm for stabilizing finite dimensional compensators. The numerical aspect of this algorithm

has not yet been fully explored.



Following examples are provided to illustrate various aspect of the robustness analysis tools discussed in

this report:

1. Robustness of the linear quadratic regulator (with full state feedback) and linear quadratic gaussian

controller from the passivity viewpoint.

(3]

Stabilization and v-index computation for the heat equation.
3. Two diagonal perturbation problems.
4. Three examples on the use of multipliers

The report is organized as follows. Section 2 defines positive realness in Hilbert space and states various
time domain, frequency domain and input/output space conditions for positive realness. Some important
lemmas needed for stability analysis in Hilbert space are given in section 3. Sections 4 and 5 present the
infinite dimensional version of the absolute stability and hyperstability theorems, respectively, and their
generalizations. Section 6 applies the absolute stability and hyperstability results to the robustness analysis
of sector-bounded perturbations. Connection is drawn between sector-bounded perturbation and pertur-
bation with norm upperbound and innerproduct lower bound. Application of the multiplier technique to
diagonally structured feedback systems is discussed in section 7. Section 8 examines the robustness analysis
for nonlinear systems. Synthesis by using the H,, optimization method is discussed in section 9. Stabilizing
finite dimensional compensator design for evolution systems is presented as a special case. Finally, several
examples are given in section 10 to illustrate application of the passivity approach to robustness analysis in
this report. Proofs of the main results are included in the main text. Proofs of supportive results are given

in the appendix section.

The usual notations of > 0 and > 0 are used to denote positive semidefiniteness and positive definiteness
of matrices, respectively. The symbols Ayin(A), #min(A4) and onin(A) are defined as the minimum matrix
eigenvalue, minimum eigenvalue of symmetrized A4 (i.e., (4 + AT)) and minimum matrix singular value,
respectively. A coercive operator means a positive operator that is also bounded invertible in the space
under consideration. The notation >0 is used for coercivity. The space in which norms and inner products
are taken will not be noted explicitly; the interpretation is inferred from the arguments. The truncated
L» space, L2([0,]), is denoted by La,. The inner product and norm in L3, is denoted by (-,-), and |||,
respectively. We say z € Ly, the extended L, space, if z € L,, for all t € [0, 00).

The space of bounded linear operators from a Hilbert space X to a Hilbert space Y is denoted by £(X,Y)
and £(X)é£(x, X). A C,-semigroup U(t) is said to be exponentially stable if there exists M > 1 and ¢ > 0

such that

W@l < Me™" . (1.3)

\We say (A, B) is exponentially stabilizable and (A, C) is exponentially detectable if there exist G and K
such that A+ BG and A+ KC generate exponentially C,-semigroup , respectively. For an introduction to
the C,-semigroup approach to the study of evolution equations, see for example [1,46,47].

2. Positive Realness in Hilbert Space

The stability results in this paper are based on the positive realness of linear time invariant systems. We

first define positive realness in terms of the state space parameters and then draw connections to conditions
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in terms of input/output signals and the frequency domain transfer function. The state space definition is
useful in the later stability analysis. The frequency domain condition is convenient for computation due to
the assumed finite dimensionality of the input/output spaces. The input/output condition relates positive
real systems to general passive systems defined by Popov inequality.

We will introduce the v-index to characterize “the degree of positive realness” (in a loose sense) of a
given system. The v-index is defined via the state space parameters but can be equivalently, and more

conveniently, computed in the frequency domain.

2.1 Time Domain Definition of Positive Realness

We define strict positive realness, positive realness and almost positive realness for 7 in terms of the state

space parameters.

Decfinition 1. Consider an exponentially stable system T given by (1.1) . If there exists ¢ > 0, P € £(X),
Q € L(X,R™), IV € R™™™ such that :

(A*P+PA+ eI+ Q"Q)z=0 for all z € D(A) : (2.1a)
B*P=C-W*Q (2.1b)
W'W=D+D" , (2.1¢)

then 7 is said to be strictly positive real.
If (A,B,C, D +dI) is strictly positive real for all d > 0, then T is said to be positive real.

If (2.1) hold with ¢ = 0, then 7 is said to be almost strictly positive real.

Equations (2.1 a—c) are called the Lur’e equations associated with (1.1) .

Remarks:

1. Equation (2.1a) is called the Lyapunov equation. It has been written in an algebraic form as to draw

analogy to the finite-dimensional case. The solution can be equivalently and more conveniently written as
{es]
Pe= [ U}l + Q' QU= dn - (2.2)
o .

Ve now show that this integral is a well defined Bochner integral [46,§V.5-6]. Since D(A) is dense in zz [1,
Corollary 2.5], given z € X, for all ¢ > 0, there exists z € D(A4) such that ||z — z|]| < . Now, for z € D(A),
[J(t)z is continuous in ¢ [1, Theorem 2.4]. Therefore, (w,U(t)z) is Lebesgue measurable for all w € X,
mecaning that U(t)z is weakly measurable [46, Definition V.4.1]. If we assume X is separable, then Theorem
V.4 in [46] can be used to conclude that U(t)z is strongly measurable which means that it is the strong
limit of a sequence of X-valued simple functions in [0,00). Combining the above arguments, we conclude
that U(t)z is also the strong limit of a sequence of simple functions. Hence, U(t)z is strongly measurable
[46, Definition V.4.1). By an identical argument, we can show that the integrand in (2.2) is also strongly
incasurable. Since U(t) is an exponentially stable C,-semigroup , the norm of the integrand is integrable.
By Theorem V.5.1 in [46], it follows that the integral in (2.2) is a well defined Bochner integral.
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The exponential stability of U(t) also implies that P given in (2.2) is a bounded operator. Furthermore,
it is a unique solution of (2.1a) [34, Lemma 1]. Since eI + Q*Q is coercive, P is positive [34, Lemma 1].
Hlowever, P is coercive if and only if A generates a C, —group [48]. The C, -group assumption holds in
finite dimensions but is restrictive for infinite dimensional systems, for example, the heat equation and the
damped wave equation (with the damping term of the form 3;%—:,5-) do not generate C, —group. Therefore,
we will not impose this requirement.

2 Unlike its finite dimensional counterpart, Definition 1 is stated in the time domain rather than the

frequency domain. This is a reasonable choice since only Lur’e equations are used in the stability analysis.
The frequency domain condition, which will be discussed below, can be considered as a practical way to

verify the positive realness property.
3. Associated with the Lur’e equations is an energy function

V(z)2 (Pz,z) . (2.3)
We will use this energy function extensively to deduce stability properties of the interconnected system in

Fig. 1.
n

In the definition below, we introduce an index that characterizes the “degree of positive realness” for

systems of the form (1.1) .

Definition 2.  The v-index of a linear time invariant system given by (2.1) is defined as

v(T) =inf{A € R : (A, B,C,D + Al is strictly positive real }

The relationship between v-index and positive realness is an obvious one.

Fact 1.  Given an exponentially stable system 7 asin (1.1) , »(7T) < 0 if and only if T is positive rt_aal.
]

2.2 TReclationship between Positive Realness and Input/Output Conditions
It is well known that finite-dimensional positive real systems satisfy an input/output dissipativity condi-

tion, called the Popov inequality [49,50]. We will show in this section that a similar relationship also exists
for systems described by (1.1) . First, we define the Popov inequality and the exponential Popov inequality.

Decfinition 3. A dynamical system with input u and output y is said to satisfy the Popov inequality if
there exists a positive constant £ such that for all ¢t > 0,

/ " (s)uls)ds > ~€ . (2.4)

0
The system is said to satisfy the exponential Popov inequality if there exist positive constants, { and v such

that for all ¢ > 0,
¢
/ e”yT (s)u(s)ds > —€ . (2.5)
0



For a physical motivation of how the Popov inequality relates to passivity, consider a network with voltage
as input and current as output. The total energy delivered to the network from time 0 to ¢ is fo T(s)y(s) ds
[32). If the network has zero initial energy and satisfies the Popov inequality, then energy is always delivered
to the system; hence, the network either conserves or dissipates energy, or, is, in other words, passive.

To show the connection between the Popov inequality and positive realness, we shall need the continuous
differentiability of the energy function (2.3) along the solution trajectory (1.2), a sufficient condition for

which is stated in the following lemma.
Lemma 1. Given z(t) as in (1.2) , U(t) exponentially stable (i.e., U(t) satisfies (1.3) ), P defined by
Pz = / U*(s)RU(s)zds forallz€X , R>0
0

and V as defined by

V =(Pz,z) . (2.6)
If u € La,, then V(z(t)) is differentiable in ¢ for all ¢ € [0, c0) and pa i) dV(z( ), is given by
V(t,z(1)) = - (Rz(t), z(t)) + 2 (PBu(t),z(t)) : (2.7)

Proof: The proof is given in Appendix I .

The relationship between positive real systems and their input/output properties can now be stated:

Proposition 1.  Given 7 as in (1.1) , assume that the input is in the extended L3 space, i.e., u € Ly,.

Then the following statements are true:
1. If T is almost strictly positive real then 7T satisfies the Popov inequality.

2. If 7T is strictly positive real then T satisfies the exponential Popov inequality.

Proof:
1. Let V(z) be defined as in (2.6) .

By Lemma 1, V(:f(t)) is differentiable along the solution and V is given by: (Note that V does not depend
on L explicitly, but ¥V may depend on ¢ due to the external input u(t).)
V(t,z(t)) = — (Q"Qz(1),z(t)) + 2 (PBu(t),z(t))

(by (2.1 a) withe=0)

= — [|Q=(1)|I” + 2 (u(t), Cz(t)) — 2(QWu(t), 2(1))
(by (2.1b))

=~ [1Qz(V)I” + 2 (u(t), y(t)) = IWu(DI® - 2(Wu(t), Q" =(t))
(by (2.1) and (2.1¢))

= 2(u(t), y(1)) ~ [|Qa(t) + Wu(t)|?

< 2(u(t), y(1))



Integrate both sides from 0 to ¢, then

[ twted. e ds = 3V(0) - 3V(=(0)
0

> —2V(2(0))

Hence, T satisfies the Popov inequality.

2 Let V(l,z) = e < Pz,z >. From part 1 of the proof, the derivative of V along solution is

V(t,2(t) = 7V (L, 2(t)) — e |Qz(t) + Wu()|I* — ee™ [lz()|I? + 2e™ (u(t), y(t))
< -(f,,—" — MV (t,2(t)) + 27 (u(t), y(t))

Choose v so that 0 < v < §. Then
V(t,z(1)) < 2¢™ (u(t), y(1))

By integrating both sides of the inequality, it follows that T satisfies the exponential Popov inequality.

2.3 Relationship between Positive Realness and Frequency Domain Conditions

Except for special cases, the Lur’e equations are difficult to verify for a given system even in finite
dimensions. Infinite dimensionality only compounds the problem. On the other hand, the finite, though
possibly irrational, frequency domain transfer matrix is more amenable to computation, both numerically
and experimentally. In this section, we will use the Hilbert space version of the Positive Realness Lemma to
derive frequency domain conditions for positive realness. The generalization of the Positive Realness Lemma
to Hilbert space was first done in [30] and later restated in [34]. To state the result here, consider a quadratic
form F defined on the Hilbert space X x R™ by

F(I,u)=(le,I)+2R£ (F2x|u)+(F3uyu) ,ZEX, uERm (28)
where F} € £(X) and F3 € R™™™ are self-adjoint and F» € £(X,R™). For complex vectors z and u, inner
product and the linear operators in (2.8) are interpreted in the corresponding complexified spaces [34].

Specifically, given z., = z; + jyi, 1 = 1,2, i, yi, are elements in a real Hilbert space, the inner product

between z,, and z., is defined as
(2e,12c,) = ({21, 22) + (y1,¥2)) + i({y1, 22) — (z1,92))
and the complexification of a linear operator £ as
Ez,, = FEz,+jEy

We first state the Ililbert space version of the Positive Realness Lemma in the same form as in [30,34].
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Theorem 1. [30,34]

Consider an exponentially stable evolution system in a Hilbert space, 7, as described by (1.1) . If for

some § > 0,
F((wI - A)™'Bz,z) > 6||z|>, forallze R™,weR , (2.9)

then there exist H € £(X), H self-adjoint, and h € £(X,R™) such that

2(Az + Bu, Hz) + F(z,u) = ||Fa¥(u - h2)|?, for all (z,u) € D(A) x R™ (2.10)
h=-F"Y(B°H+F) . (2.11)
|

To put Theorem 1 in a form suitable for our use, we need to first make the following observations. By

the Laplace transform identity [1],
(jwI=A) 'tz = / e~z dt . (2.12)
0

An exponentially stable U(t) implies that U(t)z € Ly([0,00); X). Hence, by the Riemann-Lebesgue Lemma,
(jwl — A)~'z — 0 as w — oo. Therefore, (2.9) implies that F3 is a positive definite matrix. By taking the
norm of both sides of (2.12) , it is straightforward to show that

. L M
Gwl - A~ <=, (2.13)

where M and o are related to the exponential bound of ||U(t)]|, as defined in (2.3) .

We can now state Theorem 1 in a form that relates a frequency condition to strict positive realness.

Corollary 1. Given an exponentially stable system 7 as in (1.1) , let T be the transfer function
representation of 7:
T(jw)2D + C(jwl — A)'B . (2.14)
Il there exists € > 0 such that
Re (T(jw)z,2) 2 ¢||2|* , (2.15)

for all z € C™ and w € R, then 7T is strictly positive real.

Proof: Equation (2.15) can be manipulated as follows:
2Re (C(jwl — A)~'Bz,z) +2(Dz,z) > 2¢|jz||?
= —qll(jwl — A)"'Bz||? + 2Re (C(jwl — A)"'Bz,z) + 2(Dz, z) > 2¢||z}|* — n|(jwI — A)~' Bz||?
M? 2
> (2 — n—¢ 1B |l2II*
(by (2.13))

Let 0 < < ﬁ%‘ﬁ—‘r;, then the above inequality implies that F((jwl — A)~!Bz,z) > §||z||%, § > 0, where
Iy, Fy, F3in F are given by

Fi=—gl , F=C , F3=D+DT

10



Then by Theorem 1, there exists H and h such that (2.10) and (2.11) are satisfied. As noted earlier, F3 > 0,
therefore, D + DT can be factorized as

D+DT=wTw
which is (2.1c). Now, by setting u = hz in (2.10) , we have
0= (HA+ A H)z,) + 27 (B"H + C)z - nll=|* + [|Wu?
= ((HA+ A°H)z,z) - ||Whz||? - n||z]|* , for all z € D(A) (2.16)
(from (2.11))

Define P, Q as follows
P=-H , Q=-Wh
Then (2.16) implies (2.1a). Equation (2.11) can now be written as
B*P-C=WTWh=-WTQ |,

wlhich is (2.1b). Since the Lur’e equations have a solution, 7 is strictly positive real.
[

In section 2.1, the v-index has been introduced as a time domain distance measure (in a heuristic and not
a rigorous mathematical sense) of a system to positive realness. Based on the frequency coercivity condition
(2.15) , a frequency domain measure of positivity can be defined as the uniform lower bound of T. This

quantity is defined below as the vp~index.

Definition 4.  The realness function of a complex-valued matrix T(s) : C™ — C™ analytic in the closed
right half complex plane is defined as

[RF(T){(w) = inf Re (T(jw)z,z) . (2.17)
zeC™
ll=ll =1
Negation of the infimum of the realness function is defined as the vp-index :
ve(T) = - igf‘[RF(T)](w) (2.18)
[

At each w, [RF(T)](w) can be easily computed:

[RE(T))(w) = #minlT(jw)]
= Amin [%(T(jw) + T‘(J‘w))] ' (219

If T(jw) is a scalar, then
[RF(T))(w) = Re T(jw)
We shall also need the definition of H,,-norm. Let T(s) be a complex valued matrix, analytic in the closed

right half complex plane. Then
a .
TNl =sup IT(j)ll2 (2.20)

where ||-||2 denotes the matrix 2-norm.

If T(jw) is defined by (2.14) , it is easy to show that it is uniformly bounded and continuous in w [40].
llence, vp(T) is well defined.

Some useful properties of vg are summarized below.
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Fact 2.

Let G, H , F be m x m proper transfer matrices for exponentially stable systems of the form

(1.1) . Then the following statements are true.

10.

1.

12.

ve(el) = —c , ¢ = constant
ve(aG) = { (-l:i(pa()—a) :ﬁ: :g
ve(G + H) <vp(G) +vr(H)
ve(cl + G)Y=vp(G)—c¢
ve(G) < IGllna
vr(—G) < |Gl
G strictly proper implies vp(G) > 0
(Strict properness of G means lim,j—.o G(s) — 0 .)
If the internal parameters of G are (A, B,C, D), then vp(G) < 0=>D >0
vr(K*GK) < vp(G)ol,,(K) for any complex matrix K

If %(G +G*) = H*FH, thenvp(G) < vp(F) igfa?nin(H(jw))

sup vr(GR)= sup vr(KG)= ||Glla. = sup vr(K{GK?)
K unitary K unitary KK, unitary

If G is block diagonal with square diagonal blocks {G;}, then
vr(G) = maxve(Gi)

vr is Lipschitz continuous in the Ho, norm topology with Lipschitz constant =1

Proof: The proof is given in Appendix IT .

The most useful aspect of the vp-index is its connection to positive realness and the v-index. This result

is summarized below.

Proposition 2.  Given an exponentially stable system 7 as described by (1.1) . Let T(s) be its transfer

function. The following statements are true.

1. If vp(T) < 0 then T is strictly positive real.

2. If T is strictly positive real and D > 0 then ve(T) < 0.

3. T is positive real if and only if vp(T) < 0.

4. If T is almost strictly positive real then vg(T) < 0.

o

Proof:

. vp(T) = (T).

1. This fact follows from Definition 4 and Corollary 1.
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2. Assume 7 is strictly positive real. Compute the Hermitian part of the transfer function as follows:

T(jw) + T (jw)
=D+ DT 4+ C(jwl — A)"'B + B*(—jwl — A")~'C"
=WTW +(B°P - WTQ)(jwI — A)~'B + B*(—jwl — A*)"}(PB - Q*W)
(by (2.1¢))
=WTW + B*(—jwl — A°)~ [(~jwl — A*)P + P(jwl — A)] (jwI — A)"'B
- WTQ(jwI — A)~'B — B*(—jwl — A*)"'Q*'W
=WTW + B*(~jwl — A*) Q" Q + e)(jwl — A)~'B - WTQ(jwl — A)~'B — B*(~jwl — A*)"1Q"W

( by (2.1a) )
=(WT = B*(—jwl = A*)~1Q*)(W - Q(jwl — A)~'B)+
eB*(—jwl - A 'GwI-A)"'B>0 . (2.21)

This implies vp(T) < 0. Assume vp(T) = 0. Then there exist {u,} C C™, |Jus]| = 1, and {wn} such that

0< ((T(J“’n) + T.(jwn)) un:un) < (2'22)

S|

We first show that {w,} is a bounded sequence. Assume the contrary, i.e., assume some subsequence w, — oo
as n — 0o. Then the inner-product in (2.22) converges to (Dun,un) and its upperbound converges to zero.
Since D > 0 by assumption, this is a contradiction. Hence, {u,} and {w,} are both bounded sequences and
therefore contain convergent subsequences {u,,} and {w,,}. Let their limits be u, and w,. Then

((T(jwo) + T* (jwo)) to, o) = 0

It follows from (2.21) that
Wu, — Q(jw,I — A)"'Bu, =0

(jwol — A)"'Bu, =0

Substituting the second equality into the first yields
Wu,=0 . . (2.23)

By assumption, D > 0, which implies W > 0; hence, (2.23) implies u, = 0. This is a contradiction, since
[lun,|l = 1 and u,, — u,. It follows then vp(T) < 0.

3. Assume vp(T) < 0. The transfler function of (A, B,C,D + AI) is T(jw) + M. By part 4 in Fact
2, vp(T + M) < O for all A > 0. Hence, 7 is positive real by Definition 2 and part 1 of this proposition.
Now assume 7 is positive real. By Definition 2 and part 2 of this proposition, there exists a monotonically

decreasing sequence {1,}, n, > 0, such that for all z € C™,
. s . 1
2 (T(jw)+ T*(jw) + =)z 2 na|lell?
Asn — o0, 9, — n>0and #—vO. Hence,

Z(TGw)+ T*(jw))z 20
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for all z € C™. This implies that v¢(T) < 0.
4. Assume (2.1) holds with ¢ = 0. Then vp(T) < 0 follows from (2.21) in the proof of part 2.

5. First note that an exponentially stable sysiem remains exponentially stable with any constant
feedforward. From part 4 in Fact 2, ve(T + vp(T) - I) = 0. This implies 7 + vp(T) - I is positive real by
part 3. By Fact 1, »(T + vp(T) - I) £ 0. Tt is easy to show that (T + vp(T) - I) = v(T) — vp(T). Hence,
v(T) < vp(T).
The reverse inequality follows from:
v(T) - I+ T is positive real (by Definition 2).

=ve(V(T) -1+ T) <0 by part 3.

=vp(T) = v(T) <0 by part 4 in Fact 2.

=vp(T) < v(T)

Combining the results above, we have v(T) = vp(T).
=

In the transfer matrix representation of system (1.1) , the {i,j} element of the transfer matrix is
{ei, (GwI - A)“bk>. The computation of the vp-index then involves solving an integro-differential equation

of the form
(jwI-A)z=b ,z€D(A) ,

for some given finite set of b’s € X and for each w. An approximate numerical solution can be used to obtain
an estimate of the vp—index. Another approach is to approximate 7 with some finite dimensional system
and compute the vp-index of the approximate system. The following result relates the convergence of a
scquence of such approximate systems to the convergence of their vp-indices.

Proposition 3. Suppose the internal parameters (A, B, C, D) are approximated by (An,B,.,C,,D,)
where A, is exponentially stable for each n and A, — A, B, = B,C, — C and D, — D strongly (since
the input/output spaces are finite dimensional, the convergence of B, C and D are actually in norm). Let
Ty be the transfer function associated with (An, Bn,Ca, Dy). Then RF(T,)(w) — RF(T)(w) uniformly for
all w € Q where Q is any compact set in R, as n — oo.

Proof: The proof is given in Appendix III .
n

By sclecting a frequency range @ = [-N, N] for N large enough, infg RF(T')(w) can be made arbitrarily
close to vp(T). Then by Proposition 3, infq RF(T,,)(w) will converge arbitrarily close to vr(T), also. Hence,
in practice, an approximation of vp(T') can be obtained by constructing a sequence of approximate systems
{Tn} (perhaps finite dimensional) whose vp-indices can be more easily computed. An example comparing

these two approaches of computing ve(T) is discussed in Section 8.

2.4 Finite Dimensional Positive Real Systems

Stronger connections between various state space, input/output and transfer function conditions on pos-
itive realness can be shown for finite dimensional systems. First we restate a theorem from [51] which
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provides a list of related conditions on strict positive realness. These conditions can be organized into three
tiers of necessary and sufficient conditions of increasing strength. In the top tier are the frequency coercivity
condition and two input/output coercivity conditions. They imply strict positive realness, and if D > 0,
they are in fact equivalent. The second tier, which is implied by the top tier, consist of two state space
conditions involving particular forms of the Lur’e equations, two frequency domain positivity conditions and
two input/output conditions one of which is the exponential Popov inequality. They all are sufficient for
strict positive realness and are necessary when D = 0. At the bottom tier lies a lone frequency positivity
condition which has been erroneously stated in [50,32] as a sufficient condition for the solvability of the Lur’e
equations. It is weaker than the previous two, but does not imply strict positive realness in general.

Theorem 2.

Let 7 denote an exponentially stable linear time invariant system with state space parameters (A4, B, C, D)

and transfer function T(s). Assume opin(B) > 0. Consider the following statements:
1. T is strictly positive real.

I’. Same as 1. except L is related to P by

L =2uP (2.24)
for some u > 0.
2. There exists 5 > 0 such that for all w € R
T(jw)+T*(jw) 2 0 (2.25)
3. ForallweR
T+ T (Gw) >0 (2.26)
4. Forallw e R
T(jw)+ T*(jw) >0 (2.27a)
and
wli.n;o WA (T(jw) + T (jw)) > 0 (2.278)

. The system 7 can be realized as the driving point impedance of a multiport dissipative network.

ot

6. The Lur’e equations with L = 0 are satisfied by the internal parameter set (A+pul, B, C, D) corresponding
to T(jw — p) for some u > 0.

7. Tor all w € R, there exists g > 0 such that

T(jw—-p)+ T (jw—p)20 (2.28)

8. There exist positive constants p and £ such that for all T > 0

T T
/ WT()y(t)dt > € +p / lu(t))? dt (2.29)
[} 0
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9. There exist positive constants ¥ and £, such that for all T > 0

/ T T () dt > € (2.30)
[1]

10. There exists a positive constant a such that the following kernel is positive in L(R,; R™*™)
K (t — s) = D§(t — 8) + CelA+eD(t-2) g 1(1 — 5) (2.31)

where § and 1 denote the Dirac delta function and the step function, respectively.

1. The following kernel is coercive in L,([0, T}; R™*™), for all T.

K(t—s) = D§(t - s) + CeA'=) B 1(t - 5) (2.32)

These statements are related as follows:

(= (2) = (8) = (11)

——3
(if D > 0)
U
1) (= (1) <= (4) <= (5) <= (6) <= (7) <= (9) < (10)
=
(if D =0)
4
n (3)

Proof: The proof is given in Appendix IV .
]

For SISO systems, condition (4) has been noted to be necessary for condition (5) [25] and later shown to
be necessary and sufficient in [52]. Condition (8) was termed u-strictly-passive for nonlinear systems in (42].

For finite dimensional systems, Definition 1 is non-standard. At present, there appears to be no consensus
in the literature on the definition of strict positive realness. Condition (3) has been used as a definition for
strict positive realness [50,32]. As seen in Theorem 2, it is in general too weak to be used for stability
analysis. In [52], condition (5) was used as the definition for strict positive realness. If a frequency domain
definition of strict positive realness is sought, condition (4) is a reasonable choice. Condition (7) was used
by [25] as a definition for strict positive realness for both SISO and MIMO systems. This choice is not as
appealing as condition (4), as it depends on an unknown constant u (see (2.28) ).

I the frequency condition (2.25) is satisfied, then Theorem 2 states that the Lur’e equations (2.1)
associated with 7 has a solution. How do the constants, n in (2.25) and ¢ in (2.1) , relate to each other?
This question is important because ¢ determines the rate of convergence in exponential stability results in

the later sections but it is more difficult to obtain than 7. Following corollary provides an answer.
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Corollary 2. Suppose condition 2 in Theorem 2 holds. Define
T\(jw)2C(jwI - A)'B (2.33)

Then condition 1 holds with
L=el++C7C (2.34)

where ¢ and ¥ are any positive constants that satisfy

n
1 2.35
< . (235)
and 2
< 1= ITllE, _ (2.36)

NGwI - A)-1Bll%,

Proof: The proof is given in Appendix V .

A list of equivalent conditions can be stated for finite dimensional positive real systems as in Theorem 2
(a similar list is also given in Theorem B.2.1 in [50]). We will sacrifice some generality by requiring 7 to be

exponentially stable. The full generality can be obtained by incorporating the lossless real lemma [53].

Proposition 4.  Given an exponentially stable LTI system T with an internal parameter set (4, B,C, D)

and transfer function T(s). The following statements are equivalent:

1. 7 is almost strictly positive real and P that solves the associated Lur’e equations is positive definite.

n

. ForallweR
T(jw)+T*(jw) 20 . (2.37)

3. 7T can be realized as the driving point impedance of a multiport passive network.

4. There exists a constant &, such that for all T > 0,
T
/ uT(Oy(t)dt > € . (2.38)
0
5. The following kernel is non-negative in Ly(Ry; R™*™)

K(t—s) = Dé(t — s) + CeAt=9 B 1(1 - 5)

6. T is positive real.

Proof: The proof is given in Appendix VI .
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3. Useful Lemmas

Two technical lemmas needed for later stability analysis are stated in this section. The first lemma
generalizes Datko’s theorem [33] to systems described by (1.1) with the input u € L2([0,00); R™). The
sccond lemma relates the negativity of the derivative of the Lyapunov function to internal stability. These

two results form a powerful combination that enables one to show stability without using a coercive operator

in the Lyapunov function.

The La-boundedness of the state trajectory, z(t), is equivalent to the internal exponential stability in the
zero input case [33]. The next lemma generalizes this result by showing z(t) — 0 as { — co when the input

is in L.
Lemma 2. Given z(t) asin (1.2) :
z(t):U(t)::o+/:U(t—s)Bu(s)ds ,To €X (1.2)
Assume u € L2([0,00); R™). If for every z, € X, there exists K(z,) € R such that
[ leias < k@) <o

then
1. U(¢) is an exponentially stable C,-semigroup , and

2. |lz(t)]| — 0 as t — oo for all z, € X.

Proof: The proof is given in Appendix VII .

As stated before, unlike the finite dimensional case, P that solves the Lyapunov equation (2.1a) is not
bounded invertible in general. This means that the norm induced by the inner product (z,y), = (Pz,y) is
weaker than the underlying norm of the state space. Hence, convergence in [|-}|; does not imply convergence
in the natural norm. This prevents a direct application of the standard proofs for the absolute stability
and hyperstability in the finite dimensions where the quadratic form, (Pz,z) = ||z||? is used as a Lyapunov
function candidate. This problem is avoided by introducing a lemma below which relates Lyapunov type of

analysis to internal stability without requiring the bounded invertibility of P.

Lemma 3. Given z(t) as in (1.2) . Define V(z)é (Pz,z) for some P > 0 and bounded. Assume for all
z, € X, V(z(t)) is differentiable in ¢ and there exists ¢ > 0 such that

V(tz(t) < —ellz(* (3.1)
Then for all o € [0, Le]|P]|=") and z, € X, the following statements are true:
1. If u(t) € Ly([0,00); R™), then z(t) — 0 as ¢ — oo.
2. e?'z(t) € Ly([0, 00); X).
3. If e?'u(t) € Lo([0,0); R), then z(t) — 0 exponentially with decay rate o as { — oo.
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Proof: The proof is given in Appendix VIII .

4. Absolute Stability

In this section, we will show the following generalization of the finite—-dimensional absolute stability
theorem: »(T) < 0 = T is absolutely stable. This result can be considered as an extension of the passivity
theorem [40], which says two interconnected passive systems are input/output stable, to internal state
space stability. By applying the absolute stability theorem to 7 and A after simple loop transformations
(feedforward and feedback of both 7 and A by constant systems), we show that an interconnection of sector
bounded 7 and A is stable. The interpretation of this result as a Hilbert space version of the circle criterion

[24,35,36,40] will be given in Section 6.

To ensure wellposedness of the interconnected system, the following technical assumption is made through-

out this section.

Assumption 1.  Given the interconnected system in Fig. 1. Assume that there exists a unique solution

u of
u=—-A(t,Cz+ Du) , (4.1)

for every t > 0 and z € X. Define A, as the solution operator
u=-4A,(,Cz) . (4.2)

Assume A, is bounded uniformly in t, for ¢ in bounded intervals, continuous in ¢t and locally Lipschitz

continuous with respect to Cz.

The uniqueness of solution assumption in Assumption 1 is needed to remove the possibility of a multi-
valued map from Cz to u, for such generality is not addressed in this paper. The boundedness, continuity
and local Lipschitz conditions on A, implies that a unique mild solution of the interconnected system exists
for all ¢ such that z(¢) is bounded [1, Theorem 6.1.4.]. We will discuss below a condition on A that will

assure these required properties on A;.

If A is bounded uniformly in ¢, for ¢ in bounded intervals, and continuous in ¢, it is easy to see that the
same properties hold for A;. Suppose A is locally Lipschitz in the second variable, i.e., for every T > 0 and

constant ¢ > 0, there is a constant L(c,T) such that
la(t, 1) = A, 22)|| < L(e, T) [|lz1 - 2|

holds for all zy, z2 € R™ with ||z1]| < ¢, ||z2|]| < cand t € [0,T]. Let u; = Ay(t,Cz;), i = 1,2, then for every
T >0 and ¢ > 0, we have

lur — w2l
=||A1(t,Cz,) — As(t, Cza)||
=||A(t,Cxy — Duy) — A(t,Czz — Dus)||
SL(e, T) ([ICzy — Cza| + || D[l [[w1 = u2ll) (4.3)
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fort € [0,7), ||Czi — Du;|| < ¢, i = 1,2. Given ||Cxzi|| < ¢1, ¢1 2> 0, there exists e such that ||Cz; — Dy;]| < ¢
if
HAlllDl < 1 (4.4)

where

A Alt, z)
l|A]|= sup sup A, 2)]
«R:eR™ =l

Condition (4.4) implies A(¢,0) = 0 and also guarantees a unique solution of (4.1), but it is not necessary.
Now, if

L, T)||ID|l < 1 (4.5)
for all T > 0 and ¢ > 0, then (4.4) is satisfied and the local Lipschitzness of A} follows from (4.3) . In

many situations, 7 is strictly proper, i.e., D = 0, then the condition for the wellposedness of solution can

be placed on A directly.

The following lemma states that the non—negativity of A implies z and u € Ly,, which is needed for the

differentiability of V' along the solution trajectory.

Lemma 4. Consider the interconnected system in Fig. 1. Assume D > 0 and yTA(t,y) > 0 for all
t> 0 and y € R™. Let u be the unique solution of (4.1) for each t > 0. Then z(t) does not finitely escape
(bounded on bounded intervals), x € Ly, (X), u € L3 ,(R™) and there exists > 0 such that ||u]| < 5||z|]-

Proof: The proof is given in Appendix IX .

If A is non-negative, then Assumption 1 and Lemma 4 together imply that a unique mild solution exists
for all £ > 0.

We now state and prove the generalization of the absolute stability theorem.

Theorem 3. Given the interconnected system as in Fig. 1. Let 7 be an exponentially stable system
given by (1.1) . If »(T) < 0 and
vTAtLY) 20 (4.6)

for all t > 0 and y € R™, then z(t) — 0 exponentially as ¢ — oo.

Proof: Let V(z) = (Pz,z) , where P is given by the solution of the Lur’e equation (2.1) associated with

7. Now,
|zTA1(t,z)| > - zTAl(t,z)

=2zTA(t, z + Du)
=(z + Du)TA(t,z + Du) + u” Du
2pmin(D) [|A1(, )| (by (4.6))

By property 7 of Fact 2, umin(D) > 0. Hence, A;(¢,0) = 0. From Lemma 4, u € L,_, which, by Lemma 1,
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implies that V(z(t)) is differentiable along the mild solution (2.2) and V(z(t)) is given by

V(t,2(1)) = —el|z()|* - IQz()]|* + 2 (PBu(t), (1))
= —ellzI? - [lQz(®)II* - 2(PBA(t, y(1)), z(t))
= |z’ ~ IQ=z(1)I? - 2u(t)T A(t, y(t))
- 2A(t, y(1))T DA(t, y(t)) + 2A(t, y(1))TWT Q=(t)
(by (2.1b))
= —el|lz()I* - 2p(t)T AL, y(2)) - 1IQ=(2) - WAL, y(1))II®
(by (2.1c) and completing the square)
< —ellzI?  (by (46))
By Lemma 3, part 2, the last inequality implies that e®*z(t) € L2([0, o0); X), for all & € (0, 1¢||P||~"). From
Lemma 4, this implies e?*u(t) € L([0,0); R™). By Lemma 3, part 3, z(t) converges to zero exponentially

with rate o as t — oo.
]

In many applications, the forward system T is strictly proper; since this implies ¥(7) > 0, Theorem 3, as
it stands, is not applicable. In the remainder of this section, we will generalize Theorem 3 to more general

classes of systems.
The interconnected system in Fig. 1 can be transformed to an equivalent system by using a loop trans-
formation (§III.6 in [40], §5.5 in [54]) as shown in Fig. 2. The corollary below applies Theorem 3 to the

transformed interconnected system.

Corollary 3. Consider the interconnected system in Fig. 1. Assume 7 is an exponentially stable
system. If
1
wT) < 3 8 >0, (4.7)

and A satisfies
(Alt,y),(A(t,y) - By)) <0 forallt>0and ye R™ (4.8)

then z({) — 0 exponentially as { — oco.

Proof: The transformed forward system, T + 1 - I is exponentially stable and v(T + 5-1)<0by (47).
Let i be the input into the transformed feedback system. Then

1
y=y— <AL,
y=y-zA(LY)
The inner product between the input and output of the transformed feedback system is
- 1
§TA(Ly) =yTALY) - 3 lai i

which is non-negative by (4.8) . By Lemma 4, the internal signals do not finitely escape. Hence, by
Assumption 1, a unique mild solution exists for all ¢ > 0. The exponential convergence of z(t) to zero then

follows by applying Theorem 3 to the transformed system.
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Fig. 1 can also be transformed to an equivalent form as in Fig. 3, in which the original forward and
feedback systems are both wrapped around with positive feedback, a-I. Let v be the input of the transformed
forward system. Then u = ay +v. If L ¢ ¢(D) (¢(D) denotes the spectrum of D), then a realization of the

transformed forward system is

t=(A+ao(l-aD)"'C)z+ B(I —aD) v

y= (I —aD) Y (Cz + Dv)
Since A + a(I — aD)~!C is a bounded perturbation of the original generator A, it also generates a
C,—semigroup [Theorem 3.1.1 of 1]. Hence the transformed forward system belongs to the class of sys-

tems described by (1.1} .

The following corollary follows directly from Corollary 3.

Corollary 4. Consider the interconnected system in Fig. 1. Assume 7 is exponentially stable. Define

T=(-aT)'T , (4.9)
where L ¢ #(D). Let the transfer function representation of 7 be T(s). If T is exponentially stable and
wT) < % 8> 0, (4.10)
and A satisfies
(At y) +ay,(A(t,y) - (B-a)y)) <0 forallt>0andy €R™ (4.11)

then z(t) — 0 as ¢t — oo.

Proof: In Fig. 3, the transformed forward system is T and the transformed feedback systemis A(t,y)+ay.
The stated result follows from Corollary 3 by replacing A(t,y) by A(t, y) + ey.

n
Remarks:
4. A sufficient condition for the exponential stability requirement of T in Corollary 3 can be obtained
by applying Corollary 2. If )
a>0 and a< or
= -T
v(=T) (4.12)

1
a<0 and a<rT) )

then T is exponentially stable. Alternatively, the graphic Nyquist test [55] can also be used, which has the
advantage of being both necessary and sufficient.

5. When m = 1 (single-input/single—output case), the class of A that satisfies (4.11) has a natural
interpretation of sector-boundedness: for each t, the graph of A lies between two lines: —ay and (8 — a)y.
For m > 1, we call (4.11) a general sector-boundedness condition, though the interpretation is less clear.
There are two special cases worth noting, however. In the first case, if § = 2a, then (4.11) reduces to a single
norm upperbound of A by a. In the second case, if for each ¢, A is linear and symmetric (A(t,y) = A(t)y
and A is symmetric), then (4.11) can be replaced by a norm upperbound on A by 8 — & and a lowerbound

on Ymin (A) by —a (see section 6).

6. In Theorem 3 and Corollaries 2 and 3, if A does not depend on ¢, the resulting stability of the
interconnected system is unilorm with respect to the initial time.
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5. Hyperstability

We will prove the hyperstability theorem in the following form: If »(T) < 0, then T is hyperstable and
cxponentially hyperstable. This result is similar to the absolute stability theorem, except the feedback system
A is dissipative in the more general sense of the Popov inequality or exponential Popov inequality. Indeed,
the absolute stability theorem can be considered as a special case. By applying the hyperstability theorem to
the interconnected systems after applying the same loop transformation as in Section 4, a stability condition

for general sector bounded 7 and A is obtained.

We restrict our analysis to the class of feedback systems that preserve the wellposedness of the overall

interconnected system. This assumption is explicitly stated below.

Assumption 2.  Given the interconnected system in Fig. 1. Assume a unique mild solution of 7 exists

for all ¢t > 0.
"

A class of [eedback systems for which Assumption 2 is satisfied consists of evolution equations with a

memoryless nonlinear feedback. Consider the following class of feedback systems

:=Fz+Gy (5.1a)
w=Hz+Jy (5.1b)
-u = ¢(¢, w) (5.2)

where z € Z, Z is a real Hilbert space, w € R’, F is the infinitesimal generator of a C,-semigroup , G, H
are bounded operators, ¢ : R® — R™ is a time-varying nonlinear function. Eq. (5.2) can be written as

~u=¢(t,Hz + JCz + JDv) . (5.3)

The discussion on the wellposedness of solutions in Section 4 also applies here. Assume u in (5.3) can be
uniquely solved for all {, z and z, i.e., there exists a function ¢, such that

u=¢y(t,Hz + JCz) . (5.4)

Further assume that ¢, is locally Lipschitz with respect to the second argument, uniformly bounded in ¢ for
¢ in bounded intervals, and continuous in . As shown in Section 4, a sufficient condition for the existence of
such function ¢, is that ¢ is uniformly bounded in ¢ for ¢ in bounded intervals, and continuous in ¢, and ¢
is locally Lipschitz with the Lipschitz constant L(c,T') that satisfies

Le,TH|ID| <1 , (5.5)

for all T > 0 and ¢ > 0. The interconnected system can now be written in the following form:

[:] = [c,fic 2‘] [:] - [GBD]¢‘ (‘,UC : Hl[:]) : (5.6)

g (F)‘] generates a C,-semigroup and 4; = [CfC 2..] is a bounded perturbation of A,,

Ay also generates a C,-semigroup (Theorem 3.1.1 in [1]). The nonlinear feedback map ¢ (¢,[JC : H]-) is

Since A, =
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locally Lipschitz, bounded uniformly in ¢ for ¢ in bounded intervals and continuous in ¢, since ¢ has these
properties and [JC : H] is a bounded operator. Hence, by Theorem 6.1.4 in [1], a unique mild solution of
(5.6) exists for all ¢ such that z(¢) and z(t) are bounded. In Lemma 5 below, we will show that if A satisfies
the Popov inequality then z and z cannot finitely escape. Hence, a unique mild solution exists for all ¢ > 0.
The case considered in [34] and [§IV.2,39] is a special case of this formulation. The interconnected system is
given by
z(t) = Az(t) + bp(o(t))
5.7

220 = (e, 2(0) ~ $lo@)o - o0
In our framework, this corresponds to £ =1, B=-b,C=(¢,),D=p, F=0,G=1,H=1,J =0and
¢ time invariant. Since ||JD|| = 0, the assumption on ¢; can be directly placed on ¢. We shall discuss this
example again later in this section. Another special case is when A is also a linear time invariant system
modeled by an evolution equation. In this case, ¢ is just the identity map and a unique mild solution of
(5.6) exists.

The following lemma is needed to show the differentiability of the energy function V(z(t)) along the

solution.

Lemma 5. Consider the interconnected system in Fig. 1. Assume D > 0. If A satisfies the Popov
inequality, then z does not finitely escape, z € Ly (X), u € L, ,(R™) and there exist positive constants n;
and n» such that

llulle < m + mlzlle - (5.8)

If A satisfies the exponential Popov’s inequality, then z does not finitely escape, e?*z(t) € Lq,, ¢”*u(t) € Lo,
and there exist positive constants &, n; and 7, such that

lle”* u(s)lle < m + ma2 lle”* z(s)lle - (5.9)

Proof: The proof is given in Appendix X .

If A is given by (5.1) and F generates a bounded C,-semigroup (i.e., the semigroup is bounded uniformly
in ¢), then under the conditions in Lemma 5, z does not finitely escape either. Hence, condition (5.5) , the
Popov’s inequality on A and D > 0 guarantees the existence of a unique mild solution for all ¢t > 0.

We can now state and prove the main result of this section.

Theorem 4. Given an interconnected system as in Fig. 1, let the forward system 7 be an exponentially
stable system given by (1.1) . If »(T) < 0 and A satisfies the Popov inequality, then z(t) — 0 as t — oo.

Proof: Let V(z) = (Pz,z), where P is given by the solution of the Lur’e equation (2.1) associated with
7. From Lemma 5, u € Ly,. Hence, by Lemma 1, V(z(t)) is differentiable along the mild solution (2.2) and
V(z(t)) is given by (some algebra is skipped since it is identical to that in the proof of Theorem 3):

V(t,z(t)) € —€llz(t)]|* + 2 (y(t), u(t))
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By integrating both sides of the inequality from 0 to oo, we have i
t
/Q llz(s)[? ds < = (V(z,,) +2limsup / (y(s), u(s)) ds)
o € t—co Jo

< 2 (V(ze) +%) < o0

Hence, r € L2([0,00);X). From (5.8), this implies that u € L2([0,0); R™). From Lemma 2, it follows that
z(t) - 0ast — oo forall z, € X.
]

Under additional assumptions, the asymptotic stability result in Theorem 4 can be strengthened to ex-
ponential stability.

Corollary 5. In Theorem 4, If, in addition, A satisfies the exponential Popov inequality, then z(t) =0
exponentially as { — oo.

Proof: Define
Vilt,z) = e**'V(z)
where V(z) is as defined in the proof of Theorem 4. Since V(z(t)) is differentiable along the mild solution
of T, so is Vi(t,z(t)) and the derivative is given by
Vi(t 2()) < 20677 (Pa(t), 2(8)) + € (—e [|=(t)]I* + 2 (u(t), u(t)))
< =7 (e = 20 || PI|) llz()|I* + 2¢*** (y(t), u(t))
By integrating both sides and using the exponential Popov’s inequality assumption, we have e’‘z(t) €
L([0,00); X) for all & € (0, 1¢[|P||~!). By Lemma 5, this implies that e”*u(t) € Ly([0,00); R™). It follows
from Lemma 2 that z(t) — 0 exponentially.

Remarks:

- 7. Theorem 4 and Corollary 5 only state that z(t) — 0 as t — co and the feedback system is L, stable,
but not the convergence of the internal signals in the feedback system. If the feedback system is given
by (5.1) in which F generates an exponentially stable Co-semigroup , then the feedback system is also
internally stable.

8. If A is an exponentially stable linear time invariant system that can be represented as (1.1), then
by Proposition 1, the condition on A in Theorem 4 and Corollary 5 can be replaced by positive realness and
strict positive realness, respectively.

The same loop transformation technique used in Section 4 can be applied here, also. We first state the
result relating to the transformation in Fig. 2.

Corollary 6. Consider the interconnected system in Fig. 1. Assume 7 is exponentially stable. If

v(T) < % 8>0, (5.10)
and A satisfies 1
(v, W) ~ GIAWIE 2 ~€ (5.11)

for all t € [0,50) and y € R™ and some £ > 0, then z(t) — 0 as t — oo.
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Proof: The transformed forward system, T + g- - I is strictly positive real by assumption. Let y be the
input into the transformed feedback system. Then

1
g =y— =A(t,
§=y-5A(LY)
The Lj-innerproduct between the input and output of the transformed feedback system is

5 AW, = 080N, - FIAWIE

which, by assumption, is uniformly bounded below. Hence, asymptotic convergence of z(t) to zero follows

from 4.

If the feedback system is given by (5.1) and the transformed feedback system satisfies the Popov’s
inequality, then all the internal signals are finitely bounded (by Lemma 5). Therefore, (5.5) implies a
unique mild solution exists for all ¢ > 0.

Similar to Corollary 3, the stability result related to the transformation in Fig. 3 can be easily derived.
Corollary 7. Consider the interconnected system in Fig. 1. Define
T=(I-aT)'T , (5.12)

where 1 ¢ o(D). Let the transfer function representation of 7 be T(s). If T is exponentially stable and

w(T) < % ,8>0, (5.13)
and A satisfies
((A(y) + oy), (A(y) - (B -a)y)), <€ (5.14)

for all ¢ € [0,00) and y € R™ and some £ > 0, then z(t) — 0 as ¢ — oco.

Proof: In Fig. 3, the transformed forward system is 7 and the transformed feedback system is A(y) + ay.
Since the transformed feedback system satisfies the Popov’s inequality, by Lemma 5, u € L,_ and z € L,_,
which implies that the input into the transformed forward system is in L,,. Corollary 6 can now be used to
complete the proof.

Remarks:

9. In Theorem 4 and Corollaries 5—7, if A is a time-invariant system, the resulting stability of the
interconnected system is uniform with respect to the initial time.

10. If § = 2o, then the class of A that satisfies (5.14) is equivalent to an La,~norm upperbound on A
for all ¢ € [0, m0).

11. Results in this section can be directly applied to the type of systems addressed in [34]. Consider
the system given by (5.7) , where A generates an exponentially C,-semigroup and ¢ is a nonlinear, locally
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Lipschitz function that satisfies r¢(r) > 0 and #(0) = 0. The wellposedness of this system has been shown
in the beginning of this section. We want to show that more general stability conditions can be obtained
by using the results here. This system can be represented in terms of the block diagram of Fig. 4. The
forward system has the transfer function

T(s)=p—c(sI—A)"'b

The feedback system consists of an integrator and @, which is time invariant. The Lj,~inner-product between
the input and output of the feedback system is computed as

‘ do(r) . _ [°®
A¢(U(T))Tdr—/a(0) #(o)do

Define B(o) = [ ¢(€)d€. Since ¢ is a first-third quadrant function, &(c) > 0 for all ¢ € R. Hence,

a(t)
) #(0) do = (o (t)) — $(a(0)) 2 —%(s(0))

which implies that the feedback system satisfies the Popov inequality. By Theorem 4, if v(T') < 0, then
the system described by (5.7) is uniformly asymptotically stable. This result is more general than that in
(34] in which ¢ is required to satisfy an additional condition lim,|—c fo' #(o)do = oo for the closed loop
asymptotic stability. Furthermore, Corollaries 6—7 can be used for more general classes of forward and
feedback systems. For example, the reactor type equation in Eq. (1.3) of [34] is a case that the stability
condition in [34] is not directly applicable (since p = 0) but can still be considered within the framework
here.

12. Absolute stability theorem, Theorem 3, can be considered as a special case of Corollary 5. If A
is non-negative for each ¢, it satisfies the exponential Popov inequality. Then, by Corollary 5, z(t) — 0
exponentially as { — co.

6. Robustness Analysis for Unstructured Uncertainties
Results in sections 4-5 can be interpreted in a robustness analysis context. Restate the result in Corollary

7 as:

For all 3 that satisfies
1

W(I-aT)-1T)

a class of A that preserves stability is given by

g <

(6.1)

e, )y ={A:({Alt,y) +ay), (At y) - (B-a)y)), <& forsome, alltandallye Ly} . (6.2)

We only consider the uncertainty class as in (6.2) ; the absolute stability case (where inner product is taken
in R™) follows in exactly the same way. In this section, we will analyze conditions (6.1) and (6.2) in greater
detail; specifically, we want to restate them in terms of conditions directly on 7 and A, respectively.

First consider (6.2) . In the SISO case (m = 1), this condition has a natural interpretation of sector-
boundedness: A lies between two lines: —ay and (8 — a)y. We call (6.2) a general sector-boundedness
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condition on A for m > 1; however, the interpretation is less clear. We seek to relate 2; to the following set -
that has greater practical appeal (a norm upperbound and an inner-product lower bound):

e, f) = {A: At < B -yl +7 » (AC )9, 2~y =72 6.3)
for some v,,72 > 0 all t and all y € L,,} .
It is easy to see that X;(a,B) C Zi(a,B). However, the reverse inclusion is of greater interest since we
would like to have the stability condition (6.1) to directly provide an acceptable class of A given by I,.
Unfortunately, the reverse inclusion is not true in general, but it is true in the following two special cases.
1. fg=2a.
2. In Ey(a,B) and Zx(a, B), replace ||| and (-,-), by ||-|| and {-,-), ¥i’s by zero. A in L, is assumed to

be linear and symmetric.

Case 1 follows from algebra. The set £3(a, 2a) then reduces to a single norm upperbound of A by a.

In case 2, there exists a symmetric matrix A for each ¢ such that
A(t,y) = A(t)y

Suppose A € Iy(e, B), ie., }
AN <8 -«
Hmin (A(t)) 2 -a ,

for all t > 0. Since A(t) + « - I is symmetric non-negative definite, there exists a factorization:

(6.4)

A)+a-I=MTM

Now,

A +a- Dyll>-ByT(A+a-Iy

= ﬂ(A*‘_“'I)}L'_‘_z._g).yT(A-}-a-I)y

yT(A-}-a-I)y
T 2 -
S(”_M_ﬂ”_ -8)- yT(A +a-Dy

M 4]?
<SUIMI? = B8) - y"(A +a- Dy
<A +all=8)-y"(A+a Iy
SUIA)l = (B =) -y" (A +a D)y
<0

Hence, A € (e, ).

The inclusion Iz(a, ) C ,(a, B) is not true in general, witness antisymmetric A + a - I. The following

result shows a connection between the two sets. If
(B - cvq)2 +(f-2a)a;—a(f-a)<0 , (6.5)

then

Z2(e1, /1) C Ei(a, B)
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Given (a, B), the allowable region of (a;,3;) is shown in the shaded area in Fig. 5. This figure is useful in.
finding an acceptable class of A € Tj(ay, ), given a pair (a,8) from Corollary 4 (a graphic method will
be discussed later in this section). Given (a;,0;), the allowable (o, B) is shown in the shaded area in Fig.
6. This figure can be used to transform uncertainty specification from Za(a1,8) to Zy(a, B).

For the rest of this section, we focus on (6.1) . We assume 8 — a > o; otherwise, the lowerbound in (6.3)
is redundant. A more convenient sufficient condition for (6.1) is stated below.

Proposition 5.  If T is exponentially stable and there exists 7 > 0 such that

14 (8 = 20)[RF(T)}(w) — a(B - ) ITGW)|P 2 7 , (6.6)
for all w € R, then v(T) < -}- where 7 is given by (4.9) .
Proof: If (6.6) holds, then for all v € C™

(8—2a)Rev"Tv + [Jvll® = a(B — a) [T v|f* > nlv]|?

which can be written as

Rev" (8 — )T + I)(I - aT")o 2 ol . (6.7)
For each w € R and z € C™, define
v, = (I = aT*(jw))"1z . (6.8)
By Theorem 5.7.1 in [56], we have
1
I —-aT (jw))" | > —m—— 6.9
101 ~ TG 2 T (69)
Ilence, there exists a § > 0, independent of w, such that
loall® > 611217 . (6.10)
Substitute v,, for v in (6.7) and use (6.10) , we have
. . -1 ﬁ - . 1 2
Re z°(I — aT(jw)) ('ﬂ—)T(JW) +3 I)z2>¢&|4]|
for some £ > 0 and all z € C™. This can be written as
. © Ny~ . 1
Re (1 - oT (i)' T(ju) + 5)z > € eI
which is equivalent to V(’}:) < -},-
|

Remarks:

13.  Note that (6.7) has similar form as A in I,. Therefore, we say T is sector bounded with a general

“sector” (= gz, 3).
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14. A sufficient condition of (6.6) is

a(8 - &) T, < 1- (8 - 20)UT) . (6.11)

If 8 = 2a, then (6.6) becomes .
—_—a = —_— 12
f—a=a< Tl (6.12)

Recall that when # = 2o the class of A that preserves stability is characterized by the small gain conditions
(see Remarks 5 and 10). Hence, we have obtained the following small gain stability criterion [40]:

1 _ylle
Al < —— or Al € = —+ 7 6.13)
el T e Al 17 fr e (

for some ¥ > 0.

If « =0, then (6.6) becomes
1

el (6.14)

8 <

This case is a restatement of Corollary 4 and 7.

If »(T) = 0 (i.e., T is positive real), then (6.13) becomes

a(f - a)<ﬁ,{r . (6.15)

This condition demonstrates the trade—off between the upperbound and lowerbound of A when T is positive
real (8 —a and a are interpreted as generalized upperbound and lowerbound of A, respectively; see Remark
5).

15. Another special case of interest is when A is a constant linear scalar. Write A as Ay. Then an
acceptable class of A is

-ﬁ <A< U(—lﬂ . (6.16)
B

Given a system 7T, condition (6.6) can be checked by a single graphic test. Write (6.6) as
sen(e) |- (RF(T)) - ) (RETI@) + 52 ) + RED)@) - ITGIE] >0 .

Define
z(w)? = (IT(w)|? - RF}(T)(w))

where the sign of z is chosen the same as the sign of w. If z(w) is plotted versus RF(T)(w), then (6.17)is
equlvalent. to the plot staying within the circle symmetric about the RF(T')(w) axis with end points -—1-—
and I, for & > 0, and staying out of the circle with end points —+1m and — JT for a < 0. The forbldden
rcz,lon in each of the two cases, @ > 0 and a < 0, is illustrated in Fig. 7 .

The z vs. RF(T) plot is similar to a Nyquist plot except 7' can be a matrix (if T is a scalar transfer
function, then this plot is just the Nyquist plot with perhaps a flip about the ReT axis). The graphic
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test itself is similar to the circle criterion [24,40]. Since it reduces exactly to the circle criterion in the
lumped parameter, single-input/single—output case, this test can be considered as a generalization of the
circle criterion. Note that o and 8 need not be selected a priori. Once the Nyquist-like plot is given, a and
B can be chosen so that the corresponding circles either enclose or stay away from the plot, depending on
the sign of a. Of course, a is additionally constrained to feedback stabilize 7.

This version of the circle criterion for evolution equations is similar to the previous generalizations in
(35, 36]. The setting here is slightly different in that the input and output spaces are assumed to be finite
dimensional. As a consequence, we are able to obtain the graphic test involving a single Nyquist-like plot.

Remarks:

16.  To apply this technique in robustness analysis, we suggest the following procedure. If m = 1, use
(6.16) . If m > 1, choose a and B —a from the generalized circle criterion (by using fig. 7) with the constraint

that a < . Then interpret the acceptable class of A by either Li(a, #) or La(ay,3;) with (a1,51)

1
v(-T)
satisfies (6.5) .

7. Robustness Analysis for Structured Uncertainties

When additional structure is known in A, stronger stability results can be obtained. In this section,
we assume A is diagonal and time invariant. By increasing the assumption on the elements of A, from a
general time invariant sector bounded nonlinearity to monotone nonlinearity to linear scalars, progressively
improved robustness margins can be obtained.

To proceed with the discussion, we need to introduce the multiplier technique for robustness analysis. At
the present, it is necessary to restrict 7 to finite dimensional systems due to the boundedness requirement
on the input and output operators (B and C). The generalization to evolution systems is included in the
research thrust to extend the passivity approach in this report to unbounded input and output operators.

Consider a scalar, non—negative A in Fig. 1. A multiplier, z, is an operator that changes the passivity of z7
from that of 7, but does not change the passivity of A -'L from that of A. We can use this technique together
with the loop transformation introduced in Sections 4 and 5. Consider the system in Fig. 1, assuming both
systems are scalar. After feedback of o and feedforward of 1, the forward system becomes 7;_% + % Call
the feedback system A, with input § and output w, after the corresponding loop transformations having
been performed on A. If there exists a muitiplier z for the transformed interconnected system such that

T 1
V<Z(I+_a7-+5)) <0 ,

then z(t) — 0 as t — 0o so long as

jw>0 . (7.1)



Now, y = F + §. Therefore, j = y — %. The condition for stability (7.1) becomes

(y- %)w 20
2
Syw 2> %
sw? < fyw

<0 < (A(y) + ay)® < By(A(y) + ay)

aos(¥+a)5ﬂ

This then motivates the following optimization problem for finding the “best” multiplier, given a lower bound
a for A:

Find = from a specified class of multipliers which maximizes 3 that satisfies

(g e d) <0 2

In the rest of this section, we will discuss results related to special classes of multipliers and their appli-
cations to diagonal uncertainties.

If A is a scalar, time invariant nonlinearity, the following is a legitimate multiplier
zi(jw)=14+qjw foranyg>0 . (7.3)

If A is a scalar monotone nonlinearity, in addition to 2y, another valid multiplier is

z(jw)=1+¢qj foranygeR . (7.4)

When A is diagonal and linear, the transformation DAD-! = A does not affect the feedback system but
changes the passivity of the forward system, D=7 D. This technique is called D-scaling (since it represents
a rescaling of the input and output of 7) and has been used extensively in the computation of the x4 measure
{12].

First consider the multiplier z;. If A is a scalar time invariant, first-third quadrant nonlinearity, then the
L,, inner product between the input and output of A - ;1; is

((A : z—llxy),y) = (AW, 1), +(AG)E), - (75)

By assumption, the first term in (7.5) is non-negative. The second term can be written as

y(t)
A(y)dy
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et Y = [J A(€) d€. Then

(t)
/y :.,) A(y)dy = Y(5()) - Y(5(0)) > ~¥(5(0))

Ilence, A - -}l- satisfies the Popov inequality. Assume 7 is strictly proper (D = 0). Then z;7T is proper with

particular realization (A4, B,C + qCA, qCB). The difficulty for infinite dimensional generalization is clear:
y may not be differentiable and Theorem 2 does not allow unbounded input and output operators. Since T
"3 assumed finite dimensional,

wnT)<0 (7.6)

implies that the state of z;7 converges to zero asymptotically, by Corollary 6 . Since z; only affects the
utput map of 7, the state of T converges to zero, also. If the upperbound of A is 3, then the stability
condition (7.6) becomes v(z,(7 + %)) < 0 which is equivalent to
1
vinT)< = . (7.7
B
The stability condition obtained by using the multiplier z; is called the Popov criterion and has a graphical

terpretation [40,54,25).

Condition (7.7) can be posed as an optimization problem: find ¢ in z; that maximizes 8. An equivalent
roblem is to find ¢ that minimizes J(q) = v(z,7T). We now show that J(q) is globally convex in ¢, therefore,
wne optimization problem can be efficiently solved by using, for example, a line search technique. The
ronvexity of J(gq) is shown below:
J(aqs + (1 - a)q2)
=v((1+ (aq + (1 - a)q2)jw)T(jw))
=v(a(l + q1jw)T(jw) + (1 — a)(1 + g2jw)T(jw))
Sav((1+ qjw)T(jw)) + (1 — a)v((1 + q2jw)T(jw))
(by parts 4 and 5 of Fact 2)
=al(q1) + (1 - a)J(q2)

If A is a scalar monotone nonlinearity, the multiplier z; can be used in addition to z;. This fact was
proved in [p.166 in 25] and [57] and was shown leading to the off-axis circle graphic test. If A is non-negative
ith upperbound 3, then a condition for stability based on z; is v(z2(T + ‘1,-)) < 0 which is equivalent to
1
B

gain an optimization problem can be posed to find ¢ that minimizes J(q) = v(z;7). With analysis identical
to the z; case before (with w = 1), it is easy show that J(q) is globally convex in q; therefore, the optimization

w(22T) < (7.8)

~ ‘oblem can again be efficiently solved.

We now consider A with scalar diagonal elements, A;, i = 1,...,m. If each A; is a non-negative
nlinearity (possibly non-monotone), then a straightforward generalization of the scalar result leads to the
llowing bound on ﬂé max; |A}:

. 1 1
ﬂ<mm{u(TZl)’V(Zl'T)} . (7.9)
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where Z, = diag {1+ q1jw,... ,1+ gmjw}. The optimization problems of finding q¢ = col {91,--- yam} to
minimize J(q) = v(T Z,) or J(q) = ¥(2,T) are again globally convex in q.

If each A; is a non-negative monotone nonlinearity, then the inverse of a upperbound on max; |A;]
can be found from the minimization of the indices J(q) = (7 Z;) or J(q) = v(Z;T) for i = 1,2 and
Za =diag {1 + q1j,... ,1+ gmj}, which are all globally convex in g.

In applying the above results, a lowerbound, L = diag {—ay,...,—am}, should be subtracted from each
A;. Then upperbounds for A; + a;y can be found by using the multiplier technique with 7 replaced by
(I+TL)"'T.

When each A; is, in addition, linear, we obtain a superior stability criterion. Write each A; as
A;y. Consider 2™ different cases of possible variations of A, depending on the signs of each A;. Let
S = diag {s1,...,5m}, where s; is either +1 or —1. Clearly, there are 2™ possible S. By combining with
the multiplier technique before, we have the following stability condition for each quadrant of the parameter

space:
54:20 o (7.10a)
- - 1 1
_ . 10b
Al = max 4] < :Eﬁ??‘z"‘“{inf, (ST Z:(q)) inf, u(z.,(q)sa')} ' (7.106)
where 5; = £1.

Since A is linear, we can further incorporate the D-scaling into (7.10) :

iz (7.11a)
] 1
infq V(DSTD_lzk(q))’ inf’ V(Zk (Q)DSTD-I) } » (711b)

|A]l = max |Ai| < sup max ma.x{
i D k=12

where D = diag {d,,... ,dm}, di € R.

It can be easily shown that the minimum of the bounds in (7.11) is a less conservative upperbound for
the u measure than a common choice in the literature: infp || DT DY\, and, furthermore, it is a bound
for the real parameter variations (i.e., A; € R).

The stability bounds in (7.10) and (7.11) measure “directional” robustness. The added information over
a single scalar measure such as the 4 measure may be useful in the following context. If A can be modified,
then directional robustness can point to a set of parameters that possesses better robustness property.
Frequently, the true plant is a linearized version of some nonlinear system. If A corresponds to uncertain
plant parameters, then the results here can point to a more robust operating point. If A corresponds to
uncertain gains in the controller, then direction robustness is again useful in selecting a robust nominal value.

We have only consider two specific choices of multipliers so far in this section. This is due to their simple
forms and the global convexity in the corresponding optimization problem. In general, there exists a large
class of multiplier for monotone nonlinearities [58, 59]:

00
z(jw) =1 —/ 7 (t)e™7“" dt (7.12)
)
z1(t)>0 forallteR 7.13)
{~ ]
/ zi(t)dt <1 . (7.14)

34



For the rest of this section, we will present some preliminary thoughts on finding the optimal multiplier
within this class. Suppose A is scalar and non-negative. Then v[(T + é-)z] < 0 is a sufficient condition for
stability. A numerical algorithm was proposed in [60] to find the largest 8. To reduce the problem to an
optimization involving finite number of parameters, ¢ and w are discretized over uniform and finite grids. The
algorithm then finds the optimal multiplier for repeated guesses of 3 until v(T + )z] < 0. We propose a
different procedure. Write the optimization problem in a slightly different form. By stra.lght.forwa.rd algebra,
it is easy to show that

Re z(jw) ]
v(T + )z] <0&f<g [lnf Re (TGw)2(0)) (7.15)
where , )é{ o ifz>0
&= |z} ifz<0
Since zy(t) > 0, there exists z; € Ly(—00, 00) such that
/(v Z]_(t)c-jw‘ dt = (Zzh, 22) f (716)

where the inner product is the complex La(—oo, 00) inner';ﬁi‘oduct over the variable ¢, and k is given by

h(jw) = cj“"gh,.(w) + jhi(w)
he(w) = coswt hi(w) = sinwt

Let T, and T; be the real and imaginary part of 7. Then the problem of finding the optimal multiplier can

be written as ‘
1- (h,.z:, Zz)

- = . f
= Jcuw infg [T, =T, (hyz3,22) + T, (hiza, 22)]
IZ]":(I

(1.17)

This is an infinite~dimensional optimization problem since z; is in a unit ball in Lz(—~00,00). Let {e;}o
be a basis of Ly(—~o0,00) (such basis exists since L,(—oo, o) is separable). Approximate z; by

n= Z:a,-e.- = FEa |, (7.18)
i=1
where E = {e;,... ,ex} and a = col {ay, ... ,an}. Let H, be the symmetric matrix with the (7, /)th element
(hrei,e;) and H; be the matrix with (hiei,ej). Then the optimal multiplier problem can be approximated
by the following finite dimensional problem:

Bn = sup inf g

[ 1-aTH,a ]
flall<tweR

T. —TraTH.a + T;aT H:a

Many constrained nonlinear optimization algorithms can be used for this problem (e.g.,[61]), but issues
such as the rate of convergence and numerical stability remain to be explored. By is clearly nondecreasing
in N and bounded above by 8*. If 8* is bounded, then B will converge, but whether it will converge to g*
remains to be investigated.

Convergence of nonlinear numerical optimization algorithms depend heavily on the accuracy of the initial
guess. Therefore, as N is increased, optimal a from the previous N, padded with zeros, should be used as a
starting guess for the next optimization problem to improve convergence.

Application of this wider class of multipliers to the case of diagonal A follows similarly as before. This
result will be communicated in future memos.
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8. Application to Nonlinear Systems

In this section, some preliminary results on robustness of nonlinear systems (i.e., the state space description
of 7 in Fig. 1 is nonlinear) are presented. To avoid too much technicality, we assume X = R". There are
two possible approaches. The first approach converts the nonlinear state dynamics of 7 to a linear one with
nonlinear perturbation and then apply results in sections 4-5. The second approach directly generalizes
absolute and hyperstability to nonlinear systems by using the input/output characterization of passivity
(Popov inequality) and an equivalent state space condition (nonlinear version of the Lur’e equations) [42].
Only the first approach will be discussed here, as the latter approach is still under development.

Suppose z = 0 is an equilibrium point (i.e., f(t,0) = 0) of the following system
5(t) = fit,2()) - (8.1)

We are interested in finding conditions for the equilibrium point to be globally asymptotically stable. Rewrite
(8.1) as a linear system with a nonlinear perturbation:

#(t) = —az(t) — (- f(t, z(t)) - az(t)) , (8.2)

where a > 0 is an arbitrary scalar. Since £ = —az is strictly positive real (with A = —al, B=C = I,
D=0,P =1 e=2aand Q =0 in the Lur’e equations), by Corollary 3

2T f(t,z) < —allz|* (83)

implies that (8.1) is exponentially stable. Contrast this condition with the condition in the Krasovskii
Theorem [Theorem 6.4 in 62] (for time—-invariant systems):

Vv f(t,z) < =61 . (8.4)

We now show this is a special case of (8.3) . If (8.4) is satisfied, then there exist ;,... ,6, such that

_af.‘(t,z)

o2 26>0

Integrate both sides from 0 to z;. Then

{ =filt,z) > 6;z; ifz; >0
~filt,z) < bizi fz; <0

Uence, — fi(t,z)z; > &;z%, which implies (8.3) .

In the same spirit, the following more general result can be derived:

Proposition 6.  Given (8.1) . Suppose that f(t,z) is bounded with respect to z for each t and there
exists a matrix P > 0 and a constant ¥ > 0 such that

—-zTPf(t,z) > v||z|® forallzand? . (8.5)

Then (8.1) is exponentially stable.
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Proof: Again rewrite (8.1) as (8.2) . Let z = P!z be the output of this system. Since P >0 => P~1 >0,
it follows that (~al, I, P=1,0) is strictly positive real. Define f; (t,z)éf(t,Pz) = f(t,z). By writing the
perturbation term in terms of the output z, the following condition is sufficient for stability (from Corollary
3):

T(=filt,z)—aPz) >0 . (8.6)

We now show that (8.5) implies (8.6) .
zT(=fi(t, 2) = aPz)
=-2Tf(t,z) - azT P~z
=-2zTPf(t,z) — azT P~'z
27 ||zIl? = «||P~| {l=]|
2Al=l? A >0

The last inequality follows by setting « sufficiently small.

Note that condition (8.3) is a special case with P = I.

The same framework can be used to study robust stability of a perturbed nonlinear system. Suppose the
actual system is of the form

T = fr(t,z) = f(t,z) + (fr(t,z) - f(t,z)) . 8.7)

If the assumption in Proposition 6 is satisfied ( implying that system (8.1) is exponentially stable), then a
sufficient condition for stability is

—zT P(fr(t,z) - f(t,2)) 2 =7 [l=l* | (8.8)

where 7 is given by (8.5) . By using the same technique as before, a condition that implies (8.8) is
—P(Vefr =V f) = (Vefr =V f)TP+29yI>0 foralltand z . (8.9)

This condition has appeared in [41].

Results in this section can be applied to a common situation: approximation of a nonlinear system by a
linear system. As a special case, we will recover the result in Lemma 3.1 in [41]. Suppose the true plant is
nonlinear but linear in the control and a full state feedback u = —Gz has been applied. Then

f(t,z) = (A - BG)z
fr(t,z) = (A7(t,z) - Br(t,z)Gz)
Assume the linear system is closed loop stable. Then there exists P > 0 that satisfies
P(A-BG)+(A-BG)TP=-Q <0 |,
which implies (8.5) . Condition for the stability of the closed loop nonlinear system [ollows from (8.8) :

zT(P((Az - Ar(t,z)) = (B - Br(t, z))Gz) + ((Az — Ar(t,z)) — (B ~ Br(t,z))Gz)T Pz + 2T Q=

(8.10)
20 foralltandz
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A sufficient condition, which is Lemma 3.1 in [41], follows from (8.9) : -

P((A-V.Ar)—(B=V.(BrGz)))+((A-V.Ar)~(B-V,(BrGz)))TP+Q >0 , forallt and z . (8.11)

As stated earlier, the first approach is rooted in linear theory and the nonlinear dynamics is treated as
a perturbation. It is possible to generalize the robustness analysis ideas presented in previous sections to
nonlinear systems by using Popov inequality and nonlinear Lur’e equations to characterize dissipativeness.
The v-index can be defined based on the minimum feedforward required for the nonlinear system to satisfy
the Popov inequality; and it can then be related to the nonlinear version of the absolute stability and
hyperstability theorems. Past research in this area spearheaded by Moylan and Hill [42,63,64] has produced
much of the required machinery. We will communicate our work in this area in the future.

9. Controller Synthesis by the Passivity Approach

Research into finding a stabilizing controller to attain the optimal »—index is still at the preliminary
stage. This section provides some ideas currently being explored. We will borrow heavily from [43] and the
terminology in [43] will be used throughout this section. The idea is a straightforward one: use bilinear
transform to convert the v-index synthesis problem to an Ho,-norm synthesis problem, the solution of
which is well known [44,65,43,66]. In certain cases, this approach yields nice analytical expressions for the
achievable closed loop v—index. One such case is when the open loop plant is additively perturbed and the
v-index of the closed loop transfer function around the perturbation is to be minimized. This problem can
be transformed into the standard Nehari problem [65] which can be solved analytically. We then use this
result to design a stabilizing finite dimensional compensator for an infinite dimensional open loop plant.

Assume a system configuration as given in Fig 8. Denote the open loop plant by G instead of P. The
transfer function between w and z is given by the linear fractional transformation (65]

F(G,K)2 [Gyy + GioK(I — GpuK)™'Gy] . (9.1)
Given (a,b), we say a transfer function T € sector[a, ] if T is stable and
RF [(1 - %T)‘(T - aI)] >0
where RF is as defined in (2.17) . The (a,b)-sector synthesis problem is defined as follows:
Given (a,b), find K such that F;(G, K) is in sector{a, b).

As shown in [43],
T € sector(a, 8]

&ZE(T - al)(I - b~'T)"" € sector[0, o]
&SE(I - Z)(I + Z)! € sector[~1, 1]

From this result, it follows that the the (a, b)-sector synthesis problem for arbitrary {a, b) can be transformed
to a (-1, 1)-sector synthesis problem (also called the small gain synthesis problem) [43,Proposition 1].
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Proposition 7. Given (a,b). K solves the (a,b)-sector synthesis problem if and only if K solves the
(—1, 1)-sector synthesis problem for the plant

&= M-YI-Z"Y(Gy; —al) =21 —ab~ )M-1=-1Gy, (9.2)
- GQ;M-IE—I (b"l - I)Gle_IE-lGu + G2q !
where
E:I—b_lGu and M=I+ E-I(Gu—aI)
| ]

To apply this result in our context, imagine an uncertainty —A that feeds from z to w. Assume a
lowerbound, A, of A has been subtracted so that A is dissipative, and J is also incorporated into the open
loop plant (as a feedback ). The problem of finding the upperbound of A can be posed as the following
v-index optimization problem:

Find K that stabilizes G and minimizes v(Fy(G, K)).

The above optimization problem corresponds to finding the smallest a such that Fi(G,K) € sector[—a, ).
By Proposition 7, this problem is further equivalent to the small gain synthesis problem for the modfied plant:

o [-1-1-2((1—a)1+Gu)'1 =2((1 - a)I + G11)"' Gy ] (9.3)

Ga((1=a)l +Gu)™'  =Gu((1 - a) 4+ Gy1)~'Gia + Gy

The procedure of solving this problem is known [65,43 and references contained therein ], we will only
briefly outline the procedure below. By using the stable fractional representation of transfer functions, the
complete set of stabilizing compensators can be parameterized by an RH o, (real proper stable transfer
matrices) matrix, Q, called the Youla parameter. Then the problem of finding K so that ||Fy(G, K)|lg. <1
can be recast as a Hankel approximation problem of finding X € RH o such that IR - X||a, <1 for some
R € RL [67] (real proper transfer matrices with no poles on Jjw-axis). The optimal value of {|R — X||s_
equals to [[Cg||, where s is the Hankel operator associated with R. ITR|| can be easily computed [65), it
is equal to the maximum eigenvalue of the product of the controllability and observability grammians of R.
Therefore, the optimization problem is solvable if and only if ICrIl < 1. Formula for computing the optimal
X can be found in, for example, [65,67,43].

For our original problem, we start from @ = 0 and increase a until the problem becomes solvable (by
checking if ||Tg|f < 1), at which time, find the optimal X for the Nehari problem and convert it back to the
compensator.

In certain cases, a bound on a can be computed analytically. The rest of this section is devoted to one such
important special case. Consider the following problem: Suppose the true plant is P+ AP where P is known
and AP € RH o, find a finite dimensional K that stabilizes P + AP. We first state a sufficient condition
for a given K that stabilizes P to also stabilize P + AP. This condition requires the product between the
v-index of the nominal closed loop transfer function around AP and the sum of v-index and the H-norm
of AP to be sufficiently small. We then show the nominal v-index only depends on the antistable part of
P and a bound can be computed. If P + AP represents a high order (possibly infinite dimensional) open
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loop system and P is a lower order (finite dimensional) approximation to be used for low order controller
design, the Hyy-norm of AP can be made small without affecting the nominal closed loop v-index. Thus,
the stability condition will be satisfied if either P is a high fidelity approximation of P + AP (small AP) or
the antistable part of P can be stabilized and has a small v-index with respect to the additive channel.

We first use hyperstability to derive a sufficient condition for a given compensator K to stabilize an
additively perturbed system.
Proposition 8.

Suppose AP is exponentially stable and its upper and lower bounds are given as
v(AP)<y ,720 ||APlla, <6 . (94)
Let K be a compensator that stabilizes P. Define
-y {K(I—(P— (6+2v)-1) K)"} . (9.5)
It . 1
ob+m <y . (9.6)
then K also stabilizes P + AP.

Proof:

Given a compensator K that stabilize P, decompose the closed loop system into two interconnected
blocks as in Fig. 1, such that the forward system is K (I+(P—=(6+2y)-1)K)™" and the feedback system
i8 AP + 6 + 27. Recall that if an exponentially stable, LTT system is strictly positive real, then it satisfies
the exponential Popov inequality. From Corollary 6 and Proposition 1, a condition for the interconnected
system to be stable is

sup :*(AP(jw) + 6+ 27)"(AP(jw) + 6+ 27~ 2)r <0 forall z€C™ . 9.7)

By using the upper and lower bounds of AP, it is clear that the inequality is implied by the condition (9.6) ,
which completes the proof.
u

The nominal closed loop v-index, o, in (9.5) depends on AP (through v and 6). If ¥ and § are re-
duced through better approximation, o may get worse. To derive an bound for & independent of AP, first
decompose the nominal open loop system to a stable part and an antistable part:

P—(6+2y) - I=P,+P,-(6§+2vy)- T ,

where P, is antistable and P, — (§+2v) I is stable. Without loss of generality, assume P, is strictly proper,
since any feedforward term can be absorbed in P,. By subtracting the stable part from both P — (6+2y)-1
and K, the nominal closed loop system can be written as (this transformation is motivated from [68])

K(I-(P-(6+2)-DK)' = Ky(I - P,K))™" (9.8)
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where

Ki=(I-KP,-06+27)-D) 'Kk . ' (9.9)
Since I is an equivalent parameterization of K,

infv {KU-(P-(6+2y)-DK) ') = inf v (K1(I - PuKy)™Y) . (9.10)

We now focus on the optimization in the right hand side of (9.10) and proceed to derive an upperbound
that is independent of AP. We only outline the procedure here, the detail will be communicated in the
future. The optimization problem in (9.10) is equivalent to finding the smallest a such that (—a, co)-sector
synthesis problem associated with the plant

G=[? Ifu] , (9.11)

is solvable. By Proposition 7, for a given a, the (—a,c0)-sector problem is equivalent to the (—1,1)-sector
problem associated with the plant

G=[(2C‘1)I ‘2¢I] L= (9.12)

¢I Py —(I —l+a

For simplicity, we assume P, does not have poles one the jw-axis. When the assumption is false, there is a
simple modification which we will mention later in the section. This assumption is not overly restrictive, as
we can always shift the jw-axis by a small amout to move these poles to the right half complex plane.

The complete set of stabilizing compensator for this plant is given by
K=(Y+MQ)X+NQ™" (9.13)

where M, N, X, Y and other relevant quantities are given by the following doubly coprime stable factorization
of P,, assuming (A, B,C,0) is a balanced (hence, minimal) realization of P, — ¢ (for detail see [69]):

P,=(I=NM"'=M"'N
[‘X,’ )};]:[—Ia ; [C:_FCF](sI—A+BF)“[B H)
[ W= 7]

-N M I I

AT + £AT = BBT

AT +TA=CTC

L =diag(oy,03,... ,00) 01202...20,>0

F=BTg-! Hg=g-icT

+
[—Fc] (sI-A+HC)" [B+CH H]
(9.14)

The two Lyapunov equations in (9.14) are solvable since we have assumed A does not have any purely
imaginary eigenvalues [70]. With this choice of coprime factorization, M and M are inners, i.e.,

M'M:M'M:[

Alter substituting the controller (9.13) into F,(G, K), we obtain an equivalent problem (the model matching
problem in [65]): Find Q € RH, that satisfies

IT: - 2QTs|lHe = |Fe(G, Kl <1, (9.15)
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where

Ty = (2¢ - 1)I - 203 MY
T3 =-2(M (9.16)
Ts=CM

The left hand side of (9.15) can be further manipulated into

Ty - T2QT3||q., = 2¢*||R~ Qllw.,

2
R= ( gc* )Fl—Fz (9.17)

=M"M* F=YM*

If M and M are not inners due to jw-axis poles in P,, (9.15) can still be manipulated into the standard
Nehari problem by using the inner-outer factorization of M and co-inner—outer factorization of M (65,87
Note that R is antistable, so this is the standard Nehari problem of finding the best stable approximation
of an antistable Lo, matrix. It is also important to note that F, 1 and F, do not depend on (, since M, M
and ¥ do not. Before stating the solution of this problem [71,67,65], some preliminaries are needed first. By
using the expressions in (9.14) , we can compute a state space representation for F; and Fy:

—(A+BF)T  FTHT D“ [FT]

Fi=1-[87 ”T1<’I‘[ 0 ~(A+HC)T cT

Fp=—F(sI-A)~'H

(9.18)

-1
It is easy to see that the controllability grammian of F is [EO g] and the observability grammian is

©
[" 91 J, and, for F3, both grammians are =~!. Hence,

0 =
1
”FFl” =1, ”rpzll ==
7 (9.19)
néo-min(P; ) = minimum Hankel singular value of P; [69]
The problem of finding Q to satisfy (9.15) has a solution if and only if
2% |Trll <1 . (9.20)
A sufficient condition is (since ' = ( ) Cr, +Tp,)
27 (( ) urp.n +Irell) <1
o Pt (9.21)

(—1+\/1+;‘;) -

In particular, if we choose @ = o*, then the (—¢*,00) synthesis problem associated with G in (9.11) is
solvable. Hence, a bound of the achievable v-index in (9.10) is ¢*. The solution Q of (9.15) can be found
in [67]. The corresponding controller K can then be computed from (9.9) and (9.13) .

In Proposition 8, o in (9.6) can be replaced by o*, since there exists a compensator K such that in (9.5)
o = o". If n is very large, then o® can be made close to zero and the stability condition in Proposition 8,
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(9.6) , is satisfied for very large AP ! To be more specific, if 7 >> 4, then \/1+ 3~ 1+ % and o* =~ 0.
Hence, if n is large (much greater than 4), then only the unstable part of the high order system needs to be
modeled for the compensator design (resulting in a lower order controller); otherwise, more stable portion
needs to be incorporated into the nominal plant until AP becomes sufficiently small so that (9.6) is satisfied.
This trade—off of achievable v»-index versus the order of controller is a unique feature of our approach in
contrast to the small gain approach in [45].

There are two straightforward generalizations. So far, discussion is limited to square plants. The same
analysis holds for a non-square plant if it is “squared up” with zeros. Another generalization is to modify
P+ AP by stable and stably invertible weightings, W, and W5, so that the open loop plant is W, (P+AP)W,
(the idea is used in [69]). This modification may affect the size of 7.

10. Examples

Several examples are given in this section to illustrate several aspects of the results in this report. In
the first example, we consider the linear quadratic regulator (LQR) problem. The well known (,00) gain
margin and (—%, %) phase margin [22] in the control channel are demonstrated by showing the transfer
function around perturbation in the control channel is positive real. Robustness issues related to parameter
variations ( AA and AB ) are also discussed. The linear quadratic gaussian (LQG) controller is considered
in the second example. The good robustness margin does not exist in general in this case. However, if
certain transfer matrices are minimum phase, then loop transfer recovery (LTR) [72] method can be applied
to approximately recover the margins in either the input or the output channel. The third example considers
a one—dimensional heat equation. The first part deals with insulated boundaries. We design a one-mode
stabilizing controller for this case. The second part deals with boundaries tied at a constant temperature.
Two computational methods of the v-index are compared: direct solution of a differential equation versus
the finite dimensional approximation. The convergence result in Proposition 3 is demonstrated. The fourth
and fifth examples illustrate directional robustness idea discussed in section 7. Two examples are taken from
[73] which were originally used to illustrate the ability of the maximum singular value to detect vicinity of
an instability region. Here, by deriving robustness margin in each quadrant, we show that robustness can be
greatly improved if the nominal gains are changed. The last three examples address the use of multipliers.
The first one is a simple harmonic oscillator with uncertain resonant frequency [16]. The second one has
appeared in several papers on the Lyapunov-based robustness analysis [14,15]. The last example is from
[74]. In each of these cases, we show that our approach gives superior results.

10.1 Robustness of Linear Quadratic Regulator

The linear quadratic optimal control problem is one of the most studied problem for infinite dimensional
control systems. In this section, we will use absolute stability and hyperstability developed in previous
sections to analyze robustness margins with respect to uncertainties in the control channel. This problem
is well understood in finite dimensions, for example, [22] and [23] showed that finite dimensional linear
quadratic optimal controllers possess [—%,oo) gain margin and [—-%, §] phase margin. We will generalize
these results to evolution systems in Hilbert space.

Consider an evolution systemn in Hilbert space given by (1.1) . We will consider the full state feedback
case, so C = and D = 0. The input u is selected to minimize the following performance index:

J = /ow ((Qz(), z(t)) + u(t)T Ru(t)) dt , (10.1)
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where Q > 0, R2»0 are bounded operators. From [75], [§4f4,47], the optimal controllér is given by
ut)=-R"'Cz(t) , CEB°P (10.2)
where P is the solution of the algebraic Riccati equation
(A*P+PA+Q—-PBR™'B*P)z=0 for all z € D(4) . (10.3)

If (A, B) is exponentially stabilizable and (A,Qé) is exponentially detectable, then (10.3) admits a unique
positive solution P such that A — BR~!C generates an exponentially stable semigroup [Corollary 4.17 and
Theorem 4.18, 47].

Asin (2.6), P can be written in the integral forms
Pz = /Q Us(r)(Q + C*R~*C)Uc(r)z dr (10.4)
0

- /o U (r)(@ + 20C* R C)VUpc(r)zdr (10.5)

where Uc(t) is the C,-semigroup generated by A — BR~!C and Uy (t) is the C,~semigroup generated by
A-(% +1)BR-'C. Following lemma shows that Uc and U, are both exponentially stable C,-semigroups.

Lemma 6. Given A, Basin (1.1), Q > 0 and R30. If (A,Q?) is detectable and there exists a
self-adjoint, positive P € £(X) and G € £(X, R™) such that

(P(A + BG)z,z) + (2, P(A + BG)z) + (Qz,z) + (G*SGz,z) =0 (10.8)
for all £ € D(A). Then (A + BG) generates an exponentially stable C,-semigroup .

Proof: The proof is given in Appendix XI .
w

By settingG=~R"'Cand S=Rin (10.6) » it follows from Lemma 6 that the Riccati equation (10.3)
implies that Uc is exponentially stable. If G = —(4 + n)R~'C and S = 2n(3 +1)~?Rin (10.6) , then
(10.3) implies that U, is exponentially stable for all n>0.

The main result on the robustness margin can now be stated.
Theorem 5. Given the following linear time invariant system in a Hilbert space:
z= Az +BL(-Cz) ,z(0) =z, € X, (10.7)

where C is defined by (10.2) . Assume that (4,Q%) is exponentially detectable. Consider following classes
of L:

1. £(t,u) : Ry x R™ — Ry x R™ is a bounded function for each ¢ and
(L= sDRD) 2 ullel? : (108)
for some 4 > 0, all t € R, and all z € R™.
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2. L is an exponentially stable linear time invariant system and (£ — -%I)R"l is strictly positive real.

3. L: Ly (R™) — L3, (R™) is bounded in the sense that there exist constants ¥, v such that
NClle £ 7 +72l=lle (10.9)

and dissipative in the sense that there exist positive constants £; and £ such that

<(c - %zyrl:,:) > -6+ &l (10.10)
t

If £ belongs to the first two classes, then (10.7) is exponentially stable. If £ belongs to the third class,
then (10.7) is asymptotically stable.

Proof: Write (10.7) as
¢=(A~(3+mBRC)z+ B(L - (5 +MI(-R"Ca) . (10.11)

This system can be represented in the interconnected form as in Fig. 1. The forward system is described
by (1.1) with state space parameters (A — (1 + 7)BR~!C, B,C,0). The feedback system is of the form
(£ - (% +n)I)~R-L). Since the forward system is exponentially stable by Lemma 6 and (10.3) implies
that the Lur’e equations are satisfied with ¢ = 0, the forward system is almost strictly positive real. By
properties 3 and 4 of Proposition 9, ~index of the forward system is non-positive. The stated result follows
by applying Corollary 3for £ in class 1, Corollary 5 and Remark 10 for £ in class 2 and Corollary 6for £ in
class 3.

Remarks:

17. When £ and R~! are both diagonal, stability conditions in Theorem 5 can be stated in a more
concise form. If £ is linear and real, then the stability condition £, € (%, 0o) can be considered as the gain
margin. If £; = ¢/#, then the stability condition ¢ € (=%, %) can be considered as the phase margin. If each
L; is a linear time invariant system with Laplace transform Li(s), a condition for stability can be simply
stated as

v(Li) < %

Even though LQR offers impressive gain and phase margins, there is no guaranteed robustness margins
against other types of perturbations, e.g., perturbation of A4, B operators, directly. We will consider a simple
example in [76] in which the stability margin with respect to a parameter in B can be made arbitrarily small.
Let

-1 0 1 1 -1 _ _11
a2 8] s=[l] e=[h 7] meeso as=[] . oo

The system is governed by
= Az + Bu+ yYABu (10.13)
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Nominally, 4 = 0. Rewrite (10.13) as
t=Az+ (B-mABu+(y+7)ABu , (10.14)

where —7; is the design lower bound for 7. Let u = —Gz be some controller such that A — (B —~ 1;AB)G
1s strictly stable. From the Corollary 3, G should be chosen to minimize the v-index of the system 7" that
has the internal parameters (A — (B — 1,AB)G,AB,G,0). Then ¥ € [, ;é.—) — 71) preserves exponential
stability. To ensure the nominal case, i.e., ¥ = 0, is included in the stability range, it is required > e
Clearly, there is no reason why LQR design will always yield good margin since T is not guaranteed to be
positive real. Indeed, as shown in the following table, the margin for the positive variation of v 18 infinite

but the margin for the negative variation becomes very poor as r becomes small ( increasing performance ).
r v(T) v(-T)

10-2 0 1.43
10-3 0 3.07
104 0 6.12

Table. 1 The Lack of Robustness with respect to Input Matrix Uncertainty in LQR

This case demonstrates the advantage of a directional robustness measure, since the nominal value of ¥
can be chosen sufficiently large to provide arbitrary robustness about the nominal.

In this example, a different LQR design yields both good robustness margin and stability margin ( in
terms of distance from the jw-axis ). Let a be the a—shift for the guaranteed closed loop stability margin
(22]. Let the required underbound for ¥ be —.9 ( it cannot be less than —1 since the a—shifted system
becomes unstabilizable for some v ). The following table shows the robust stabilization design objective can
be met:

7 r v(Ta)
0.9 10-2 0
0.9 10-3 0

Table. 2 Robustness Margin with respect to Input Matrix Uncertainty

10.2 Robustness of Linear Quadratic Gaussian Controller

When only output is available for feedback, a state observer is typically used to reconstruct the state.
By the separation principle, full state feedback control law used in conjunction with the estimated state
stabilizes the open loop system. In this example, the LQR controller is used for the estimated state feedback
and a Kalman filter type of design is used for the state estimator. Together, this combination is termed
LQG controller. However, no stochastic connotation is intended here.

The Kalman filter type estimator is of the form

t=(A+BG+KC)i- Ky

=G L (10.15)
where K, G are
G=-R'BTP=-R"'C
K=-HCTN='£ = _BN-! (10:10)
The matrices P > 0 solves ARE and H > 0 solves the dual algebraic Riccati equation (DARE):
AH +HAT + M - HCTN™'CH =0 (10.17)
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First consider a perturbation in the control channel. The true plant is now governed by
z=Az+ BLu

Close the loop with the LQG controller, the closed loop system is described by

t=Az - BR'Ci - BLR'Cz

. - - - (10.18)
t=(A-BRIC-BN-'C)t+ BN~ Cz
In the state and estimator state error ( ¢ = £ — z ) coordinate
¢l _[A¢ —-BR™C] [z ) g
G- PRI L]+ [ e
=-LR™'§
“ y (10.19)
§=Cl 1) [ i ]
Ac=A-BR'C Ax=A-BN-'C
By design, Ag and Ag are exponentially stable. In the transformed domain,
g=C® BN-'C®,Ba
ET(s)a (10.20)

where ®, = (sI - Ag)~" and ®; = (sI - Ak)~". Since (I - (1—-0)T(s)R~1)~1T(s) is in general not positive
real for o € (1, 00), the guaranteed stability margin no longer holds as in the LQR case. For a specific design,
the robustness margins can be calculated as in section 5. When the plant is minimum phase, a method has
been proposed in [9,72] to drive RF[T](w) to zero over arbitrary range in w. This technique has been termed
as the loop transfer recovery / linear quadratic regulator (LTR/LQR) method. Suppose the estimator gain
K is parameterized by a parameter ¢ such that there exists some W > 0 such that K (g — —BWq as
7 — 0. Then
T(jw) = qC® BWC(s] - A+ ¢BWC)™'B
= C® B(I + qWC(sI — A)~'B)~1qWC(sI — A)~'B

If 7 is sufficiently large over the bandwidth of C(sI — A)~!B ( the open loop transfer function ), then
T(jw) = C®,B

which has been shown to be positive real in example 5. If this approximation holds true over the bandwidth
of C®, B, then the excursion of RF([T)(w) into the negative region is small, since C®,B is strictly proper.
Given arbitrary ¢; and ¢, there exists g large enough ( compared with both the open loop bandwidth and
the closed loop LQR bandwidth ) such that —

RF[C-"IHB] —€ forw<wy
—€2 for w > w

RFIT](w) 2 {

llence, v(T) < max(e1,€2). Similarly, v((I = §TR=!)"!T) can be made arbitrarily small by choosing q
large. It is in this sense that the robusfness margin of LQR is recovered. The estimator gain K with the
above property can be achieved in the Kalman filter design by modifying the state noise covariance M to
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M + ¢*>BBT and assume the plant is minimum phase. This fact follows directly from the cheap control and-
perfect regulation problems [78,79].

A similar technique exists for perturbations in the output channel, i.e., the true output is given by
y=LCxz
It can be directly verified that in the closed loop

§ = T(s)#=C®, BR-'C®,Ba
#=-N"YL-Dy

For minimum phase systems, the loop transfer recovery / Kalman-Bucy filter (LTR/KBF) technique was pro-

posed in [80] to drive T'(s) close to positive real. This scheme uses the fact that (I—(1—0)C®, BN~1)-1C%, 5

is positive real for ¢ € (%,oo). To achieve the recovery in the same sense as the LTR/LQR case, the state
penalty is modified to Q + ¢>CTC. Then, as ¢ — 00, G — —qR3CT and T(jw) — C®, B pointwise in w.

To demonstrate that »(T) can be used as a measure of robustness margin with respect to perturbation
in the control channel, even though the loop shape is far away from the LQR case, we use a simple example

from [77]. Consider
A=[(1) }] 3:[‘1’] C=[1 0]

11

Q=q[i }] . M=[1 1] . (10.21)

Then

=-1 1f f=2+A+q
K:-—[l]d d=2+Vito

1
The actual system is assumed to be

= Az +mBu

To ensure lower bound of m, rewrite the equation as
z=Az+mBu+(m-m)Bu , my >0

Now design the LQG compensator for (4,mB,C). With the parameters as specified in [77], we have the
following robustness margins for m ( the actual margin and the prediction based on v-index ):
v(T) ¥(-T)
my ¢ o (WT)"') (¥W(-T)"') guaranteed margin actual margin

1 1 1 20(005) 14.3(0.07) (0.93,1.05) (0.92,1.05]
1 10 10 25(0.04) 12.5(0.08) (0.92,1.04) 0.92,1.04]
1 1000 1000 142 (0.007) 11.1(0.09) (0.91,1.007) [0.91,1.007)

Table. 3 v-Guaranteed Margin vs. Actual Margin, without LTR/LQR

We next apply the LTR/LQR technique to improve the stability margin. The results are summarized
below:
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LTR v(T) v(-T) guaranteed actual

m q o parameter(»(T)~')  (»(-=T)~!) margin margin

1 1 1 1 13.22 (0.07) 10.22 (0.09) (0.91,1.07)  [0.91,1.07]
1 1 1 10 6.52 (0.15) 7.23 (0.14) (0.86,1.15) [0.86,1.15]
1 1 1 100  286(0.35) 4.42(0.23) (0.77,1.35) [0.77,1.35]
1 1 1 1000  1.36(0.73) 3.09(0.32) (0.68,1.73) [0.68,1.73]
05 1 1 10 1.32 (0.75) 5.22 (0.19) (0.31,1.25) [0.31,1.25]
05 1 1 10 0.21 (4.77) 4.14 (0.24) (0.265.27)  [0.26,5.27]

Table. 4 v-Guaranteed Margin vs. Actual Margin, with LTR/LQR

As indicated by these cases, the v-guaranteed margin is almost identical to the actual margin.
10.3 One-Dimensional Heat Equation

10.3.1 Imsulated Boundaries

In this example, we design a stabilizing compensator for a one-dimensional heat equation with insulated
boundaries. Consider the following system '

2
= I+ a0
y(t) =<c,u>

uz(t,0) = u.(t,1) =0 (10.22)

32

927

Since A is of compact-normal resolvent, the solution can be put into the modal form

X=1Lp0,1] , A= D(A) = {u € Ha[0,1] : u.(0) = u.(1) = 0}

ut,z) = E un(t)dn(z) v Go(2)=1 |, ¢a(z)= V2 cosnrz

n=0
tn = —n?ru, + b, f b =< b, ép >
oQ
y=zcnun Ch =< ¢, Pn >

n=0

Assume cob, # 0 for stabilizability. This system has a single marginally stable mode, all the rest of the
modes are in the open left half plane. We want to design a stabilizing controller based on an one-mode
approximation. Write the infinite dimensional system in the perturbation form in the s—domain,

oo

_ Cobo Cnbn
y= s f+uzs+n31r3f

[ =1

= .lc"bol - sgn (c,b,)A
=( P P)u+(p+——ﬂ u

where u = sgn(c,b,)Bf, B is an arbitrary constant to be specified later, A is the exponentially stable
unmodeled dynamics and p is an underbound for Esn—(:’;"&)é. Let the control law be a simple output
feedback ~

u = —gy
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Then the closed loop system can be written as

g s . 5gn (cobo)A
y=-m7_ [eobalg v\ +p)y
(1=p9) (s + F22285) s
Clearly, if 1
0<g< ik (10.23)

and sgn(c,b,)A + pf is strictly positive real, then the closed loop system is exponentially stable. Since A
is exponentially stable, it is sufficient to have

lAllg. < pB . (10.24)

Ilence, if an upper bound of the H., norm of the unmodeled dynamics is known, then for any ¢ > 0, there
exist § and p so that (10.23) and (10.24) are simultaneously satisfied. Finally, the one-mode stabilizing

control law is given by

f=~sgn(cb)gy - (10.25)
Note that the magnitude of the feedback gain is bounded by m;:.

10.3.2 Constant Temperature Boundaries

We now consider the a perturbed heat equation with both boundaries tied at a fixed temperature. The
equation governing témperature evolution is given by
2
&=L wmaw)
y = (c,u)
X =Ly[0,1] , b c€X (10.26)
a0%u

Au=—

9z
D(A) = {u € H([0,1]; R) : u(0) = u(1) = 0}

Note that H>([0,1]; R) denotes the Sobolev space of functions whose first two generalized distributional

derivatives are in Ly([0, 1]; R).

To find a class of A that preserves stability by using absolute stability and hyperstability, we regard the
system described by (10.26) as a feedback interconnected system where the forward system has the state
space parameters (4, b, ¢,0) and the feedback system is A. Assume A is locally Lipschitz. Then, as discussed
in Section 4, a unique local mild solution exists.

We first consider the computation of the »~index of the forward system by solving £, = (jwI — A)~1p,
- This is equivalent to finding &, that satisfies

ok,
joby = S =b(z) . €u€D(A) . (10.27)

The solution is given by the variation of constant formula and the boundary conditions for elements in D(A)

- w l
£u(z) = % /0 sinh\/jt(l—r)b(r)dr—# /o' sinh(\/ju(z — T))b(r)dr ,  (10.28)
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and the realness function is given by

1 1 )
RF(c(sI = A)~'b)(w) = Re ﬁs-i:lT\/;_u—-'/o ¢(z) sinh/jwz dr ‘/o sinh\/jw(l - 7)b(7) dv—
1 z
Re ﬁ /0 «(z) /0 sinh(y/Gw(z — 7))b() dr dz

Alternatively, the realness function can also be computed by modal decomposition. The solution u can be

(10.29)

expanded as

u(t,z) = Z un(t)én(z)

n=0

on(z) = V2sinA,z , An=n7w

(10.30)
By direct computation, we have
(5, 4n) ¢n
ZO el (10.31)
ne
Therefore,
e (c.4n) (b,6n)
RF(c(s] — A)"1b)(w) = 'g Py
_ = ’\'2. {c, én) gb, ¢n (10 32)
nZ=% w? + A4

The v-index of the nominal forward system, c(sI — A)~1b, can be computed by taking the infimum of the
realness function computed by either methods described above. A class of A that maintains stability of
(10.26) can be obtained by using results in Section 4. Note that if b = ¢, which means that the sensor and
actuator are colocated, then from (10.32) , the v~index of the nominal system (with A = 0) is non—positive.
In this case, the nominal system is positive real and any bounded, non-negative A does not destabilize the
system.

For a numerical example, let
z € [.45,.55]
o(z) = { 0 otherwise
1 ze€ll,.195)

bz) = { 0 otherwise
The plot of the realness functions computed based on (10.29) and (10.32) ( with 5~mode, 10-mode, 15-
mode and 20-mode approximation ) is shown in Fig. 9. Errors in the realness functions based on modal
approximations are shown in Fig. 10. The v-indices of these cases are shown in the table below:

Approximation v-index

" 5-mode 2.94 x 10~%
10-mode 3.85 x 10-3
15-mode 3.63 x 10~%
20~-mode 3.62 x 10-%
exact 3.62 x 10-%

Table. 5 Comparison of v-indices
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10.4 Diagonal Uncertainties: Example 1

Consider the following 2-input, 2—output plant

_ 1 s—100 10(s+1)
G =T e+ [—10(s+ 1) s-100 ] (10.33)

Suppose the loop is closed with negative feedback of the following form

1+k 0
0 1+ k;
The objective is to characterize robustness margins with respect to k; and k;. Rearrange the closed loop
with transfer function T in the forward path and diag{k;, k;} in the negative feedback path. Then

7= [ 7]

The v-indices are four cases of positive or negative variations in k;, k, are listed below:

k ks v~index vt
+ + 0 00
- - 1 1

- + 10.05 0.1
+ - 10.05 0.1

Table. 6 Stability Margins for Example 4

The exact stability margin, the y-measure based stability margin and the stability margins from Table 6
are shown in Fig.11. This example has been used in [73] to demonstrate the ability of the singular value type
of robustness measure to detect closeness to instability. The Ho, norm of T is 10.05 which corresponds to
the worst case margin in Table 6. However, Table 6 provides much more information in terms of robustness
margins in different directions of parameter variations. In this particular example, stability margins from
Table 6 indicate that with different set of feedback gains (both k; and k; positive), arbitrary robustness with
respect to k;, k; can be attained.

10.5 Diagonal Uncertainties: Example 2

This example is also from [73]. Consider a two-input/two—output plant with transfer function

1 —4Ts+2 56
) = DG+ D [ a2 50s4 2] (10.34)

Again close the loop with negative feedback of the following form

1+ Kk 0
0 1+k
where the nominal values of ki, k; are zero. The objective is to characterize robustness margins with respect

to k; and k. Rearrange the closed loop with transfer function T in the forward path and diag{k,, k»} in
the negative feedback path. The robust margin is listed in the table below.
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ky ks v-index v

+ + 7.92 A3
- - 8.42 J2
- + 16.25 .06
+ - 0.50 2

Table. 7 Stability Margins for Example 5

The Ho, norm of T is 16.3 which yields a margin for k,, k; of £0.06. The exact stability margin, the
p—-measure based stability margin and the stability margins from Table 7 are shown in Fig.12. Again, the
v-index based margins in Table 7 provides more information than the small gain based margin. It also points
out the direction in which k, and k; should be moved ( k, negative and k; positive ) in order to enlarge the
stability margin.

10.6 Multiplier Method: Example 1 ( Damped Harmonic Oscillator )

Consider a simple damped harmonic oscillator with uncertain frequency:

== [—(lfo)wf —IE] :

0 1 0 (10.35)
=[G L[] o
where @ is nominally zero. The transfer function around 4 is
2
=
T(s) = 24 €s+w?
A straight forward calculation shows that
2
[°7]
V(T = ——eeSemen
( ) (26w, + 62)
v(i-T)=1
Therefore, if
—w? < w? < 2w, + €2 (10.36)

then the perturbed system remains exponentially stable. This is clearly very conservative, especially for
lightly damped system.

If the multiplier z)(jw) = 1+ ¢jw is used, then so long as ¢€ > 1, ¥(T'z;) < 0. Hence, for all 8 € (-1, o0),
the system remains exponentially stable. By direct computation, we know this bound is non—conservative.
The same bound is also obtained if the multiplier z, = 1 + ¢; is used.

10.7 Multiplier Method: Example 2

The example in this subsection has been previously used by several authors to test their Lyapunov based
robustness analysis methods [15,14]. Given

-1 0 o0 10
a=|0 -2 o B=|0 1 c=[;‘l’é}
0 0 -3 11
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We want to characterize a class of diagonal A such that (A — BC + BAC) is exponentially stable. The
forward system in this case is
T=-C(sI-A+BC)"'B

The stability margins, with and without multipliers, in each quadrant of the uncertain parameter space are

shown in the table below:

ky k2 v(T) v(5yT) v(z,T)
+ + 0.5806 0.5806 0.5806
- + 0.3358 0.3358 0.3358
+ -— 05739 0.5739 0.5739
- = 00117 0 0

Table. 8 Robustness Margins in Example 7

The worst case quadrant gives a margin of Eilsﬁ = 1.722 which is better than all the previously published
margins. The multiplier method reveals unlimited robustness margin in the {—, —} quadrant.

10.8 Multiplier Method: Example 3
Next example has appeared in [74] and contains three uncertain elements. The system is given by

z= Az + HiAHz + Bu+ FiAgFau
y=Cz
u= Ky

The parameters are given as below:

—0.0366 00271 0.0188 —0.4555 r0.4422  0.1761
0.0482 —1.010 0.0024 —4.0208 35446 —7.5922 _
4= 1 01002 03681 0707 14200 | B=|T5s2 440 ¢=[0 1 0 0]
0 0 ] 0 0 0
0 0
ool To1 o0 o0
B=1l1 11B=]0 0 o 1]
0 0l
0-
H = (l) Hy=[1 0]
0l

The uncertainty A4 is assumed to be diagonal and Ap is a scalar constant.

Two controllers are stated in [74): a nominal controller

—1.63522]

Ko = [ 1582236

and a “robustified” controller

K+ = | —0-99633989
~ | 1.801833665
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For the nominal controller, the 1~indices in each quadrant, with and without multipliers, are listed below: _

o p2 p3a T) w(aT) v(zT)
+ + + 141 07 0.81
- + 4+ 145 078 146
+ - + 113 067 023
- - + 114 028 033
+ + - 137 063 059
- + - 144 074 073
+ - - 11T 087 024
- - - 118 033 023

Table. 9 Robustness Margins in Example 8, Nominal Controller Case

For the controller K*, the v~indices are listed below

pn p2 ps YT) vaT) v(zT)
+ + + 1.52 0.83 0.89
- + + 157 0.96 1.59
+ - + 115 0.51 0.25
- - + 118 0.58 0.36
+ + = 1.50 0.76 0.77
- + = 155 0.97 0.92

+ - = 117 0.21 0.21
- - = 119 0.31 0.29
Table. 10 Robustness Margins in Example 8, Robustified Controller Case

The multiplier z; produces superior margins than z, in this case, though no general comparison can be
made. The worst case margin in the K, case is zly = 1.15 and in the K* case is 519—7- = 1.03. Both satisfy
the specification, 0.0648, and are much better than the margins given in [74]. Ironically, our margin for the
nominal case is better than the robustified case.

11. Conclusion

We have presented a new approach to robustness analysis and compensator synthesis for evolution systems
by using a passivity approach. The abstract evolution equation setting is chosen so as to include applications
to distributed parameter systems. Our results are based on the stability conditions involving the sector
bounds of two interconnected, sector-bounded (in a general sense) systems, which are derived from the
passivity theory (in the form of absolute stability and hyperstability). These conditions can be interpreted
in the context of robustness analysis when one system is the nominal closed loop control system and the
other the perturbation. When specialized to diagonally structured perturbations, the stability conditions
are sharpened by using the multiplier technique. When, furthermore, each diagonal element is linear and
constant, we introduce the concept of “directional robustness” which measures robustness in each quadrant
of the perturbation parameter space. These ideas also have applications to nonlinear systems (i.e., nominal
system is nonlinear), though the full generalization is not yet completed. In terms of controller synthesis, we
use the fact that a sector synthesis problem can be converted to a small gain synthesis problem, for which
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the solution is known. This technique is applied to the finite dimensional compensator design for an inﬁnitg .
dimensional system. An intuitive and powerful result followed: If the unstable part of the open loop system
can be stabilized such that certain transfer function is close to being passive, then only crude approximation
of the stable part of the open loop system is needed for the design of a stabilizing Eompensator. If the smallest
[Tankel singular value of the conjugate of the unstable part is large, then the desired passivity property can
be attained, meaning no information about the stable part is necessary for stabilizing compensator design.
The full range of issues relating to controller synthesis based on the passivity approach remains to be fully
explored, however, especially for the structured uncertainty case. As the many examples and applications
in this report witness, the passivity approach presented here is a viable and useful tool for robustness
analysis. Preliminary results also suggest its usefulness in the controller synthesis problem. It complements
well existing small gain based techniques such as the Ho,—norm and uy-measure. Future agenda in this
direction of research includes continuing investigation into the synthesis problem, especially for diagonally
structured uncertainties, and generalization to unbounded input and output operators to allow consideration

of boundary sensing and actuation.
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Appendix

Appendix I Proof of Lemma 1

Let t € [0,T], T < co. By using the semigroup property of U(-) and a change of variable, V(z(t)) can be
written as:

V(z(t)) = /om <R [U(t+ )zo+ /0 Ut + 7 5)Bu(s) ds] ,
[U(t + )20 + /D “Ult+r - 5)Bu(s) ds]> dr
- [’ <R [U(‘r)z, + /0 “Ulr - 5)Bu(s) ds] ,

[U(r)z,-{- /o ‘ U(r - 5)Bu(s) ds]> dr . (A.1.1)

‘e first show that the integrand of (A.1.1) belongs to L, for each ¢t € R.
o0 ¢
/ |<R [U(r)z,+/ U(r—-s)Bu(s)ds] ,
() 0
¢
[U(r)zo + / U(r - s)Bu(s) ds] >

M2z,
<2y [l 4 ygpar (S5 =) ]
(by the Schwa.rz inequality)

dr

By assumption, u € L,,. Hence, the integral in (A.1.1) is absolutely continuous (therefore, differentiable)
with respect to the its lower limit of integration. Denote the derivative by I, then

LI =- <R (U(t)z,, + -/o‘ U(t — s)Bu(s) ds) , (U(t)z, + [)t U(t- s)Bu(s)ds)>
= = (Rz(t),z(t)}

To show continuous differentiability with respect to ¢ within the integrand in (A.1.1) , we first note that for
each T € Ry,

T - 8 uls S T T -8 2 % T uls 2 3%
/0 \U(r - s)Bu(s)|d snau[/o U (r = s)|[? ds /ou()ud

< oo (by the Schwarz inequality and the L,, assumption on u)

Hence, fo‘ U(r — s)Bu(s)ds is absolutely continuous with respect to ¢t for t € (0,T) and is therefore differen-
tiable. Denote by I, the derlva.t.xve of the integral in (A.1.1) with respect to ¢ in the integrand, then by the
chain rule

L=2 /‘ <RU(1- —t)Bu(t), [U(r)z, - /0 Vir - s)Bu(s)ds]> dr

=2 /ow <RU(T)Bu(t), [U(f+z)z, + /; U(r +1t - 3)Bu(s) d3]> dr
(by a change of variable)

=2 / ~ (RU(»)Bu(t), U()=(t)) dr
0
= 2(PBu(t), z(t))
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10.

Summarizing the above, we have: V(z(t)) is differentiable along the mild solution and its derivative V(t,z(t))

is given by

V(t, z(t)) = — (Rz(t), z(t)) + 2 (PBu(t), z(t))

Appendix II Proof of Fact 2

The factorization of PR systems is standard [81,53,25]. The second implication follows from the fact

Rew*Uw = ||Vuw|f?

By definitions.

Follows from inf,, (ab(jw)) = [a|inf, ( sign(a) b(jw)).
Follows from inf(a + ) > infa + inf.

Follows from [RF(U + cI)}(w) = ¢ + [RF(U)](w).
Follows from |[RF(£U)](w)] < |[U]|x,, for all w.

By definition
vr(U) 2 - lim [RE(T)|(w) = 0

vr(K'UK) = —iBf ! lrlxlf_1 Rew*K'U(jw)Kw
<- igf HAmin (U(ju))aﬁnin(K)

= v(U)omin(K)

The inequality follows from
v(U)=v(V'WV)
<- iﬂf I‘min(W(j“))”zznin(V(jw))
< v(W)inf o0 (V(jw))

The first equality follows from

inf 1Rew'U(jm)Kw = llKinItI'-l Re (Kw)*'KU(Kw)

lwii=

For the second equality, first note that

sup [— inf ' irlxlf lR,ew'U(jm)Kw] =sup sup Rew* (-U(jw))z
wijl=

Kk Unitary “ w Illl:lil;i

Clearly, the right hand side is bounded above by ||U|lg.. Given ¢, let W W, be the singular value
decomposition of —U(w) where ||U(jw)|| = ||U|lg. — €. If w and z are chosen so that Wiw and W,z
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11.

12.

are the unit vectors with 1 as the first element. Then sup sup Rew®(—U)w can be arbitrarily close to
W  Jels=t N
f=ll=1

[lU||#. - Hence, they are in fact equal. The last inequality follows similarly.

Clearly,
inf Rew*Uw= inf wiUsw; > inf i (U llwsl|? = min g (U;
et=t T, lleddr=1 Z T T lwdia= .Z” (s lleill” = min penin (U2)
The lower bound can be attained by choosing ||w;|| = 1 for i corresponding to the minimum pmia (U;) and

J|ws}l = O for the rest. Hence, the inequality can be replaced by equality. After taking the negation of the
infimum over all w, the stated result follows.

From statements 2 and 4 above,

b (U) = v S v(U-V) < U = Vlin.

]
Appendix IIT Proof of Proposition 3
We first state a simple lemma.
Lemma A.3.1.
Given complex matrices G, G, the following inequality holds:
I‘min(Gl) - I‘min(G2) < “GI - G2"
Proof: The inequality follows from direct manipulation:
Bmin(G1) = Bmin (G2)
= inf Re (Giz,z) -~ inf Re (Ga2z,z)
-EC'. ‘IECm
fl=ll=1 fzli=1
< inf Re (Giz,z) — Re (Gav,v) +¢
szt
(Given any ¢, there exists such v, [{v]| = 1.)
<Re {((G1 - G3)v,v) +¢
<SlGL =Gl +¢
Let € — 0 to complete the proof.
n

Now we proceed with the proof of Proposition 3. The difference between the approximate transfer function,

T., and the actual transfer function, T, can be overbounded in norm as below:

1T (Gw) = TG
M M
<lIDn = Dif + —|IBIHICA = Cll + — lICall 18- — Bl
+ ICallIBall I{(Gw] = A)~" = (jwI = An)~ Y|
(by using (2.13))
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The first three terms converge to zero independent of w. Let  be any compact set in R.y By Trotter-Kato
Theorem [1,46], the last term converges to zero uniformly for w € Q. Hence, T, (jw) — T(jw) uniformly for’
w € Q. By Lemma A.1, RF(T,)(w) — RF(T)(w) uniformly for w € Q.

Appendix IV Proof of Theorem 2
(2) = (1)

Consider the optimization problem of finding @ € La((—0c0,00); R™) to minimize

Iy = [ (=5 Gu)FTFa(u) + 26" Ge)g(ju)} do

where the superscript * denotes complex conjugate transposition and # , § and @ are the Fourier transforms
of z, y and u, respectively. By writing Z in terms of the initial condition and the input, the optimization
index can be expanded as

Jy= { = ((GwI = A) 1z, + (juwlI - A)‘IBﬁ(ju))'.F?'F ((GwI = A)~'z, + (jwI — A)~! Ba(jw))

-0

+4°(jw) [((C(jwI — A)™")B + D)" + (C((jwI - A)™*)B + D)] a(jw)
+24° (jw)C(jwl — A)'z,} dw

Consider the problem as an L,—optimization. Then
Jy =< Ra,a >+ <ra>+k

where the inner products are in the L, sense. A unique solution exists if R is a coercive £(L,) (the space of
bounded operators in L;) operator. Now,

R =T"(jw) + T(jw) = BT (—jwI — AT) ' FT F(jwI — A)~'B

By condition (2), if
n> [IFGwl = A Bl (A1)

then the operator R is coercive.

By the Plancherel Theorem [82], J; can be transformed back to the time domain as
e <]
J= / [~=(t)T FT Fz(t) + 2uT (t)y(t)] dt
0

Since a unique solution of the optimal control problem exists, the necessary conditions from the Maximum
Principle must be satisfied. The Hamiltonian is given by

H = —zT FTFz 4 2uT(Cz + Du) + AT(Az + Bu)

where A is the costate or the Lagrange multiplier. The feed forward D in uT Du can be regarded as the
symmetrized D. Since condition (2) implies D > 0, there exists W > 0 such that

D+DT =wTw
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The optimal u is obtained by minimizing H:
u= -%W“W'T@C'z +BT))
The costate equation is governed by
A=2FTFz —2CTu— AT
It can be shown [83] that A depends linearly on z. Let
A= -2Pz

Then
(PA+ATP 4+ FTF)z = (C- BTP)Tu

=—-(C-BTPYTW-w-T(C - BTP)z
Since the equality holds for all z, we have
PA+ATP=-FTF -QTQ
C=BTP+wqQ”

The first equation implies P > 0. By defining L = FT F where F is chosen positive definite and satisfies

a‘:lin(F) <

N(GwI -:)“BII%.
condition (1) is proved.
) =(2)
(When D > 0)
Given the Lur’e equations, compute the Hermitian part of the transfer function as follows:
T(jw) + T"(jw)
=D + DT + C(jwl — A)~'B + BT (—jwI — AT)-1CT
=WTW + (BTP - WTQ)(jwI — A)~'B + BT (—jwl — AT)~}(PB — QTW)
=WTW + BT (—jwl — AT)™! [(—jwI — AT)P - P(jwl — A)] (jwI - A)~'B
- WTQ(jwI — A)~'B - BT (—jwI — AT)"1QTW
=WTW + BT(—jwl — AT)"Y(QTQ + L)(jwIl — A)™'B —= WTQ(jwl — A)~'B ~ BT (—jwl — AT 1QTw
=(WT + BT (—jwl — AT)"'QT)(W + Q(jwl — A)~'B) + BT (—jwl — AT)"'L(jwI - A)'B
>0

Assume condition (2) is false. Then there exist u,, llua]] = 1, and w, such that
. . 1
0 << (T(jwn) + T~ (jwn))ttn, un >< 7
As n — o0, if wy, — 00, then

< (T(jwn) + T (jwn))tn,n > — < Duq,ua>>1n>0
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which is a contradiction since the left hand side converges to zero. Hence, u, and w, are both bounded
sequences and therefore contain convergent subsequences u,, and w,,. Let the limits be u, and w,. Then.

< (T(jwo) + T‘(j“’o)) Uo, Up >=10

This implies
Wu, + Q(jw, — A)'lBu., =0

L3(jw,I — A)~'Bu, =0

Since L > 0, the second equality implies
(jwol — A)"'Bu, =0

Substituting back to the first equality yields
Wu, =0

The positive definiteness of W (by the assumption D > 0) implies contradiction. Hence, condition (2) is
satisfied.

(2) = (8)
Since (2) = (1), the Lur’e equation holds. Let
V(z) =zT Pz

Then .
V(z(t)) = z(t)T PAz(t) + z(t)T PBu(t)

- —-;—:T(t)Lz(t) - %HQz(t)Ilz + 6T ()Cz(t) + wT(OWTQ=(2)

= =327 (OLa(t) = 5 IRz - w7 (H)Du(t) + T OWTQa(t) + w7 (y(t)
< =5 I(OI + T ()5(t) = £ 1Q(t) - Wu(t)|?

< =5 =l + W™ (Bu(t)

By integrating both sides, we have, for all T > 0
T
[ v > v, (A42)
0
Since (2.1) remains valid if D is replaced by D — ¢ for ¢ sufficiently small, (A.4.2) holds with y replaced by
N=Cz+(D-eu

Then (A.4.2) becomes
T T
farasmaz e [ o - v
0 0
Identifying —V(z,) with £(z,) and € with p, condition (8) follows.
(8) =(2)
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Let T — oo in (2.30) , then

° T 2
[T v 2z +5 /: ()| dt

In particular, for z, = 0, -
[ amoudz s [ ol a
0 0
By the Plancherel Theorem,
e 2
[ atitdozp [ G do
-0 -00
for all @ € L.. Suppose that for each n > 0, there exists w € C and w, € R such that
w T (jw)w < nlhw|?
By the continuity of w*T(jw)w in w, there exists an interval Q around w, of length r such that
w* T (jw)w < 7|lwlf?

for all w € Q. Let

" )_{w ifwen
=0 otherwise
Clearly, &t € La. Then
[ wtentioyd = [ ()T (u)itie) do < el
-00 —-00

and
p [ Tt do = rpllu?
If n < p, this is a contradiction. Hence, there exists 7 > 0 such that (2.25) holds.
(8) == (11)
Condition (11) follows directly from condition (8).
(11) = (8)

The implication is obvious if z, = 0. In the proof of (8) = (2), z, is taken to be zero. Therefore, for
z, =0, (11) = (8) = (2). It has already been shown that (2) = (8). Hence, (11) = (2) = (8).

(1) = (1)

By definition.
1)=Q19

(if D = 0)
If D=0, then W = 0. Rewrite (2.1 a) as
ATP 4+ PA=-QTQ - L +2uP - 2uP
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For u small enough,
QTQ+L-2uP>0
Ilence, there exists @, such that
ATP+ PA=-QTQ, - 2uP

Since (2.1 b) is independent of Q, when D =0, (1') is proved.
(1) <= (6)
By straightforward manipulation.
=
Same as in (1) = (2) except L = 0.
(Ty = (6)
Standard positive realness lemma (see [53]).
(4) = (7)
By direct substitution
T(jw - p) + T (jw — )
=D+ DT + C(jwl — A= pI)"'B 4 BT (—jwl — AT — uI)~'CT
=T(jw) + T"(jw) + p [C(GwI — A)~'(jwI — A - pI)7' B + BT (=jwl — AT = pI)~}(=jwl — AT)~1CT]
Therefore, for any w € C™,
@ T(jw = pw 2 wT(jw)w = 2u |CHI Bl |Gw! — A) [ I(GwI — A = D)~ wl]?
Since

NGwI = A)zl| > I(w! = NlAID l1z]l]

It follows [56]
1

] = [lAll

2u]|CIlI1BIHIwli?
ol = Afl ol = 1A + g1l
By (2.27 a), for all w € Q, Q is compact in R, there exists k£ > 0, k dependent on 2, such that

IGwl - 4~ <

Then
wT(jw - p)w > w'T(jw)w —

w T (jw)w > k|jw||? (A4.3)
By (2.27 b), for w sufficiently large, there exists g > 0 such that
wT(jw)w 2 < |ju]? (A4.4)

[Tence, there exists wy € R large enough so that (A.4.3) and (A.4.4) hold with some g and k dependent on
wi. Then, for le S Wi,

2u {IC 1BI] [lw]?
Hwl = JlAN] [k = 14 + pIi]]

2/CY) 1181l fw]
> Ellwll A4
2 kil = { potigen Tl = T4 Tkl = 1A Tl e

w*T(jw — phw > k|l -
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and for w.> wy
2 |CILILBY 1wl
ol — AN Tl — 1A + £27]
Jjw|]? 2)|ClllIB]) jwl? })
2= |9-—#y sup (A.4.6)
wi>ws | ol = AN [le] = 1A+ 1))

The terms in curly brackets in (A.4.5) and (A.4.6) are finite. Hence, there exists u small enough such that
(A.4.5) and (A.4.6) are both non-negative, proving condition (7).

(M= (4)
From (7) == (6), the minimal realization (A4, B, C, D) associated with T(jw) satisfies the Lur’e equation
with L = 2uP. Following the same derivation as in (1) == (2), for all w € C™, we have

w*(T(jw) + T" (jw))w
=w'(WT + BT (—jwl - AT)'QT)(W + Q(jwI - A)~'B)w
+ 2uw* BT (—jwl — AT)~'P(jwI — A)~'Bw
>2pw" BT (—jwl — AT)"' P(jwl - A)~!Bw

2ppmin (P)min(B) |, 13
> w
21wl = ae el

Since P is positive definite and, by assumption, omin(B) > 0, T(jw) is positive for all w € R.

- . g 2
W TG = ww 2 & ol - -

It remains to show (2.27 b). Multiply both sides of the inequality above by w?2, then

W22F‘#min(P)a'min(B) "wuz
[ w] - [lA}]12

As w? — oo, the lower bound converges to 2upimin( P)omin(B) which is positive.

w?w*(T(jw) + T* (jw))w >

(7) = (5)

I (2.28) is satisfied, T'(jw — p) corresponds to the driving point impedance of a multiport passive network
[53]. Hence, T'(jw) corresponds to the impedance of the same network with all C replaced by C in parallel
with a resistor of conductance uC and L replaced by L in series with a resistor of resistance uL. Since all
L, C elements are now lossy, or dissipative, T(jw) is the driving point impedance of a dissipative network.

(5) = (7)

Reversing the above argument, if T(jw) is the driving point impedance of a dissipative network, all L and
C elements are lossy. Hence, by removing sufficiently small series resistance in L and parallel conductance
in C, the network would remain passive. Hence, again by [53], condition (7) is satisfied.

(6) = (9)
Let
V(t,z) =e"zT Pz
Then
V(t, z(t)) = ye"'zT () Pz(t) + %e"':r(t)(PA + AT P)z(t) + e"zT (t) PBu(t)
€ V(t, z(t))
2 |||

€ 4
<- (E'ITP—II _7) V(t, z(2)) + e uT (t)y(t)

SVt z() - =7 [1Qz(t) - Wu(t)|)® + e™*uT (t)y(2)
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Choose 0 < v < ?"‘7“-. Then by comparison principle, for all T > 0,

T
/ e uT (t)y(t)dt > —zT Pz,
[4)

(9) = (6)
Define
Z,
ui(t) = e2 u(t)
Y
-t
() =2 y(t) (4.48)
%,
z(t) = e2 ()
where ¥ > 0 is as given in (2.30) . Then
i = (A+ %I)xl + By,
n = C'zl + Dtu
The corresponding transfer function is
Ty(jw) = D+ C(juwl — A - %r)-la
=T(jw - 7)
By setting T = co and z, =0 in (2.30) ,
[ ommazo
0
By the Plancherel Theorem,
[ @0XTi0) + T Gy () do 2 0
Since this holds true for all i;(jw) € L,,
Ty(jw) + TT (jw) 2 0
Equivalently,
T(jw =)+ T (jw - 2) 2 0
proving (7).
(9) = (10)
Use the transformation in (A.4.8) , then condition (10) follows directly from condition (9) with a = ‘-27-
(10) = (9)

If z, = 0, (10) = (9) is obvious. Since in the proof of (9) = (6), only z, = 0 case is considered, it follows,
for the z, = 0 case, (10) = (9) = (6). It has already been shown that (6) = (9). Hence, (10) => (6) = (9).

(2) = (4) = (3)

The implications are obvious.
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Appendix V  Proof of Corollary 2

In (A.4.1) in the proof of Theorem 2(Appendix 4), after substituting eI + yCTC into FT F, we have the
following sufficient condition for condition 1:

ellGwl = A)T'BI + 7| Th(jw)l* < n  for all w € R. (A.5.1)
It is straightforward to show that (A.5.1) follows from (2.35) - (2.36) .

Appendix VI Proof of Proposition 4

The first five conditions are standard. The proof of their equivalence can be found in, for example, [53],
[50]. The equivalence of condition (6) to the rest will be shown here.

(2) = (6)
By condition (2) , D > 0. The transfer function of (A4, B,C, D + pI) is T(jw) + pI. Since
T(jw) + T (jw) + 2pI 2 2pI

and D + pI > 0, the Lur’e equations are satisfied by Lermnma 1. Hence, condition (6) is true.

(6) = (2)

From condition (6) and Lemma 1, there exists 5, > 0, monotonically decreasing, such that for all w € C™,

W (T() + T*(ju) + 2w 2 n ol
Asn — 00, , — >0 and ;‘;—-0. Hence,
T(jw) + T (jw) 2 0

proving condition (2).

Appendix VII Proof of Lemma 2

Define .
=(t) = / U(t — s)Bu(s)ds . (A7)
0

1. Let z, = 0. By assumption, z € L2(R4;X). Suppose U(t) is not exponentially stable. By Datko’s
theorem, U(-)v € L2(R4;X) for some v € X. Consider (1.2) with £, = v; we have an L,-function as the sum
of a non-Lq-function, U(t)v, and an Ljy-function, z(t), which is a contradiction. Hence, U(t) is exponentially

stable.

2. Since U(t) is exponentially stable from part 1, it suffices to show the convergence of z(t) to zero.
Equation (A.7.1) can be written as

i t
() = o’ U(t - s)Bu(s)ds + /l Ut~ )Bu(s)ds

= [: U(s)Bu(t - s)ds + /: U(t - s)Bu(s)ds
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Overbound z(t) by using the Schwarz inequality and the eﬁponential bound of U(t) given by (13) , we have

it

2l < [ / M2 uBn’ds] [ /0 !
+ [‘/:t M2e—20(t=9) "B”‘-’ ds] ['/x‘ ”u(s)”"’ ds] .

PY
oo 2 00 ‘}
5[ / M’e"‘"llBII’ds} [/ llu(S)Il’dS]
3 0

H
LATH ol
+ [ J, o ds]

Since e=2%* € Ly(R4;R) and u € Ly(R4; R™), the right hand side tends to zero as ¢ — oo.

- 13
llu(s)I? dS]

Appendix VIII Proof of Lemma 3

1. By integrating both sides of (3.1) , we have

[ P < 2oy < oo
0

Then it follows from Lemnma 2 that z(t) — 0 as ¢t — oo.

2. Let
Vi(t,z) = "'V (z) , e <ellP|™!

The derivative along the solution trajectory is

Vi, z(t)) = 20e27*V (z(t)) + 27V (z(t))
< ¥ (20 ||P|| - o) [lz(e)|I?
==X z)? , A>0

By integrating both sides, we get
‘ 207 2 1 1 20t
[ (D dr < TV (a(0) - 3 V(a(0)
< }t/(x(m) <o

This shows that e?*z(t) € L.

3. Since e”*z(t) € L, by part 2 and e®*u(t) € L, by assumption, we can apply Lemma 2, with U(t),
z(t), u(t), replaced by e®*U(t) , e*z(t) , e®*u(t), respectively, to show that there exists M(z,) < oo such
that e?* |lz(t)|] < M(z,). This is equivalent to ||z(¢)|| < M(z,)e~"* for all ¢ >0.
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Appendix IX Proof of Lemma 4
If A is non-negative, then
0< -uTy
= —uT(Cz + Du)
< llulllICz]l = pmin(D) llull®

- lc=] \? . _liCa|?
= —pmin(D) ("u” - 2[1min(D)) + 4pmin(D)

It then follows that there exists n > 0 such that
flu(®)]] < nll=(2)Il

for all ¢t > 0. The mild solution can now be bounded as follows:

t
ezl < Mll=o||+M|lBIIA e’ |[u(r)li dr

&
< Mz|l + nM||B| /0 e llz(r)l|dr
Apply the Gronwell inequality, we get
l=()]] < M [jz,fle(e=M 181

Hence, z does not finitely escape and z € L, (X). u € Ly, (R™) follows from (A.9.1) .

Appendix X Proof of Lemma 5

By assumption, A satisfies the Popov inequality. Therefore, there exists £ > 0 such that

C 2 Czll2 ’
£ 2 («,Cz + Du); > pmin(D) (”“"t - 2;1111.:(”5)) - 4,1',,,:(”5)

It then follows easily that there exist positive constants 5, and 7, such that

lulle < m + [l
Let t € [0,T), T < oo. The mild solution of T can be bounded by
lz@)ll < Me™ iz || + M ||B|| /O‘ =77 ||u(r)|| dr
Squaring both sides, we have
(O <22 e+ 201312 [ [ e o]

t
<202 e+ 247 |BIPT [ lu(r)|? dr
0
(by the Schwarz inequality)

{
< OM? ||z, | + 2M2 || BIPT (2n'f +2n3 [ el dr)
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By applying the Gronwell inequality, it follows that z does not finitely escape.

It also follows from (A.10.2) that there exist positive constants a and b such that

=l < a+ 6/0: [/0 ||u(r)ndr]2 ds

¢
<avt [ s ullds
0
4
< a+ 26T + 2603T / lIz]i? ds
[+]

From the Gronwell inequality, we have z € L,,. u € Ly, follows from (A.10.1) .

If A satisfies the exponential Popov inequality, identical steps as in the first part of the proof can be
followed with z(t) and u(t) replaced by e’*z(t) and e?‘u(t), respectively, to show that e?*z(t) € L. (X),
e’‘u(t) € L, (R™), and there exist 7; and 75, such that

lle”*u(s)lle < m + n2|le”* z(s)ll;

Appendix XI Proof of Lemma 6

The proof basically follows the proof in Lemma 4.16 of [47] with slight modifications. Since (A4, Q%) is
detectable, there exists S € £(X) such that A+SQ? generates an exponentially stable C, -semigroup Us(t).
Write

A+BG=A+35Q%+(BG-35Q%)

Since (BG—SQ1%) is bounded, we can use the perturbation formula (3.1.2) in [1] to relate the C, -semigroup
Uc(t) generated by A + BG to the C, -semigroup Us(t) generated by A + SQ3:

Us(t)z = Us(t)z + /0' Us(t - 7)(BG - SQ¥)Ug(r)z dr . (A.11.1)

From (2.6),
Pz = f Us(r)(Q + G* RG)Us(r)z dr
0

Since P is a bounded operator,
o0 1 oQ 1
< Pz,z>= / Q3 Ug(r)z|* dr +/ IRFGUs(r)z||? dr < ||P)}]|z]]® <
0 0

This implies Q'éUG(-):c € La2(R4;X). Since R is assumned to be coercive, GUg(-)z € La(R4;R™). From
(A.11.1),

t 2
1Watell < 1Ws@ell+ [ (1Us(e= )" (UBINIGTa(r)al + IS Q3 Ua(r)el) dr
By Schwarz inequality,

IWa(O)z] < Us(t)=||+

[ J wste= dr] " x [ | Wwste = DB Gzl + 1151 noéva(r)zmﬁdr]
0 0

i
2
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Squaring both sides and overbound square of sum by two times the sum of squares, -

lUa(t)=|l? < 21|Us(e)=|+

/ WUt - Pl dr x / WUt - DIICUa(Rl? + Q3 Vel ar . A11D)
4] 0

Since Us(t) is exponentially stable, there exists M > 1 and a > 0 such that ||[Us(t)]| < Me~**. The last
term on the right hand side of (A.11.2) can be overbounded by

t
01/0 e~ C=(IGUs(n)zll? + |Q2 Us(r)z|) dr

Integrating this term with respect to ¢ from 0 to oo, we have

00 ¢
/ / e~ =" |GUG(r)zl? + Q¥ Us(7)z||?) dr dt
0 0
= / f” (e=et=nat) (IIGUG(7)=|l? + IQ¥Us(r)zI) dr  ( by Fubini Theorem )
0 T

= _/ow( IGUa(n)all* + 1Q*Us()all*)dr < 0o

The last inequality follows from the Li-boundedness of GUgz and QéUaz that have been shown earlier.
Now, in (A.11.2) , Us(t)z is square integrable by using Datko Theorem and the exponential stability of
Us(t), and we have shown that the second term is integrable. Hence, Ugz is square integrable for all z,
which, by Datko Theorem, implies that Ug is exponentially stable.
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Fig. 1 Prototype Intcrconnected System

Fig.2 Interconnected System with Loop Transformation
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Fig. 8 Feedback Control System with Perturbation
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Table 7
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Fig. 12 Stability Margin for Example 5
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